
CountTimeSeries.jl Documentation -
Modelling Univariate Count Data Time

Series in Julia

Manuel Stapper
Westfälische Wilhelms-Universität Münster,
Department of Economics (CQE), Germany

Version: May, 3rd 2021

Abstract: A Julia package is developed to deal with univariate count data time series.
For a general class of integer ARMA and GARCH type models, the package allows for
simulation, likelihood based estimation and inference. Nested are also regressions with
integer response variable. Information criteria and the non-randomized PIT histogram
may be used to assess the model choice. Further, h-step ahead predictions can be
carried out including prediction intervals from a parametric bootstrap.

The package is currently available in the GitHub repository https://github.com/

ManuelStapper/CountTimeSeries.jl.

Keywords: Julia, Count Data, Time Series Analysis, Count Regression

1 Introduction

The Julia package presented in the following was developed for the analysis of count
time series. It covers a broad class of integer-valued GARCH and ARMA like models.
Time series following these models can be generated and parameters are estimated using
numerical maximization of the likelihood. Confidence intervals are computed via stan-
dard maximum likelihood procedures. Information criteria and the non-randomized
PIT histogram provide model diagnostic devices. Forecasts can then be used including
simulation based forecast intervals.

The structure of the CountTimeSeries package is kept modular to allow for easy
extension of alternative estimation methods of model frameworks. In the following,
the INGARCH and INARMA framework is introduced first together with the notation
used throughout this paper and in the package. Then, the functions contained in
the package are introduced. Their in- and outputs are summarized and details are
provided. This manual concludes with an outlook of possible future extensions.

1

https://github.com/ManuelStapper/CountTimeSeries.jl
https://github.com/ManuelStapper/CountTimeSeries.jl

2 Framework

The two model frameworks incorporated in the CountTimeSeries package shall first be
presented from a theoretical point of view in the following section.

2.1 INGARCH(p, q)

Developed by Ferland et al. (2006), the INGARCH framework builds a cornerstone in
modeling count data time series. Starting with their basic framework, different gener-
alizations have been developed thereafter. Some important extensions are included in
the CountTimeSeries package. Models without regressors can be formalized as

Yt|Ft−1 ∼

{
D(λt, θ) with probability (1− ω)

δ0 with probability ω
(1)

f−1(λt) = β0 +

p∑
i=1

αiYt−i +

q∑
i=1

βiλt−i ,

where Yt is observable process, Ft the information set at time t and D(λt, θ) a dis-
tribution with support N0, mean parameter λt and possibly further parametrized by
θ. Possible candidates for D are Poisson and Negative Binomial distribution. Zero
inflation is incorporated whenever ω > 0. Then Yt|Ft−1 follows a Dirac distribution
with probability ω and distributed according to D(λt, θ) with probability 1 − ω. The
link function f is restricted to either the identity function or the exponential function
during the following.

In many applications, the observed count process is influenced by regressors and
not purely self driven. To include regressors in above models, the second row in (1) is
altered to

λt = νt +

rE∑
i=1

ηiXi,t

νt = β0 +

p∑
i=1

αiYt−i +

q∑
i=1

βiνt−i +
r∑

i=rE+1

ηiXi,t

for an identity link and

log(λt) = νt +

rE∑
i=1

ηiXi,t

νt = β0 +

p∑
i=1

αi log(Yt−i + 1) +

q∑
i=1

βiνt−i +
r∑

i=rE+1

ηiXi,t

for a log-linear link. Thereby, r denotes the number of regressors, where the first rE
regressors enter the system externally and the remaining rI regressors enter it internally,

2

affecting not only λt but also νt. A Poisson or NB regression is nested in this framework
and can be specified setting p = q = 0.

Given a vector of parameters θ, the likelihood is easily computed as

L(θ) =
T∏

t=M+1

P (Yt = yt|Ft−1)

=
T∏

t=M+1

PD(Yt = yt|Ft−1)(1− ω) + 1{yt = 0}ω .

2.2 INARMA(p, q)

Besides the INGARCH framework, count data time series are often modelled in an
ARMA like structure. Different approaches have been developed starting with McKen-
zie (1985) and Alzaid and Al-Osh (1988). In the scope of this package, we focus on the
thinning based INARMA framework discussed by Weiß et al. (2019), who introduced
an efficient Maximum Likelihood based estimation. This approach is generalized to a
framework similar to the one presented in the previous subsection, . An INARMA(p,
q) model with possible zero inflation and deterministic regressors can be formalized as

Yt = Rt +

q∑
i=1

βi ◦Rt−i +

p∑
i=1

αi ◦ Yt−i + Zt

Rt ∼

{
D1(λt, θ) with probability (1− ω)

δ0 with probability ω

f−11 (λt) = β0 +

rI∑
i=1

ηiXi,t (2)

Zt ∼ D2(µt, θ)

f−12 (µt) =
r∑

i=rI+1

ηiXi,t

The thinning operator ◦ is defined for p ∈ [0, 1] and X ∈ N0 as p ◦ X =
∑X

i=1Bi,

where Bi
iid∼ Bin(1, p) for strictly positive X and zero if X = 0. Thinning operators

in above framework are assumed mutually independent. Both distributions D1 and
D2 have support N0, means λt and µt respectively and might be further parametrized
by θ. Possible distributions are limited to Poisson and Negative Binomial. Both link
functions f1 and f2 are either the identity or the exponential function. Zero inflation
can be incorporated in the distribution of Rt and translates to an inflation of zeros in
Yt. Regressors can either enter the system externally by affecting the mean of Zt or
enter it internally affecting the mean of Rt.

The likelihood is not easily computed for the INARMA framework, since the process
{Rt} is unobservable. Every possible path of {Rt} is considered during the evaluation

3

of the likelihood. The computation time increases drastically with a higher MA order
q. From the first line of (2) it is obvious that Rt ≤ Yt. Therefore, the possible values
of Rt given Yt = yt are limited. This property can be exploited when computing the
likelihood.

For a general q, the likelihood can be computed using

bt(rt, rt−1, ..., rt−q) := P(Rt = rt, ..., Rt−q = rt−q;Yt = yt, ..., YM+1 = yM+1|YM = yM , ..., Y1 = y1) ,

where M := max{p, q}, which gives

L(θ) =

yT−q∑
rT−q=0

...

yT∑
rT=0

bT (rT , ..., rT−q) .

The arrays bt(rt, ..., rt−q) are initialized by

bM+1(rM+1, ..., rM−q+1) =P(RM+1 = rM+1)
M∏

i=M−q+1

P(Ri = ri|Ri ≤ yi)·

P

(
p∑
i=1

αi ◦ yM+1−i +

q∑
i=1

βi ◦ rM+1−i + ZM+1 = yM+1 − rM+1

)
.

Then for t = M + 2, ..., T the following recursion holds

bt(rt, ..., rt−q) =P(Rt = rt)

 yt−q−1∑
rt−q−1=0

bt−1(rt−1, ..., rt−q−1)

 ·
P

(
p∑
i=1

αi ◦ yt−i +

q∑
i=1

βi ◦ rt−i + Zt = yt − rt

)
.

Weiß et al. (2019) describe an efficient likelihood evaluation technique for q = 1,
which translates above computation to a matrix product recursion. The idea is ex-
tended to q = 2, likelihood evaluation of models with higher order are computationally
demanding and not feasible for practical purposes, see Dungey et al. (2019).

3 Functions and Structures

The following section describes functions and structures included in the CountTime-
Series package. Functions are summarized in a table, in- and output are presented
together with the data type accepted and a short description. Structures are self de-
fined data types. They can be used to standardize in- or output of functions. They
are described here by a table with entries of the structure, their data type and a short
description.

Further it should be noted that different packages are used inside the CountTime-
Series package, i.e. Optim, Distributions, LinearAlgebra, Random, Plots, Calculus and
Roots.

4

3.1 Model Specification and Parameters

As a first step, different types of count data models are defined. The type CountModel

defines the broad class containing all models described in Sections 2.1 and 2.2. Subtypes
of this class are defined for the two frameworks, called INGARCH and INARMA. These
three types are defined as abstract types, actual structs give information about model
specifications and are defined as subtypes of INGARCH and INARMA. Namely, there are
three subtypes of INGARCH, INGARCHModel, INARCHModel and IIDModel. The former
contains the following specifications

Table 1: INGARCHModel - Model Specification

Variable Type Description

distr String Conditional distribution
link String Link function
pastObs Array{Integer, 1} Past observations included
pastMean Array{Integer, 1} Past means included
X Array{Abstract Float, 2} Regressor matrix
external Array{Bool, 1} Are regressors external?
zi Bool Zero inflation

The distribution distr can either be "Poisson" or "NegativeBinomial". The link
function link can either be "Linear" or "Log". The entries pastObs and pastMean

specify which lags are included in the definition of the conditional mean. Thereby it
is possible to include no lags ([]) or non-consecutive lags ([1, 12, 24]). In case of
regressors, the vector external must clarify which of those enter the system externally,
having the same length as there are regressors. The regressor matrix X shall include
the regressors row-wise. Finally, the boolean variable zi indicates if zero inflation is
incorporated.

In case of no recursion in the conditional mean (q = 0), an INGARCH model reduces
to an INARCH model. A specification object for INARCH(p) models is defined as
INARCHModel, which includes all entries as in 1 besides pastMean. Further a model with
no serial correlation is defined as IIDModel, with no entries pastObs and pastMean.
Although this class is called IIDModel, observations might not be identically distributed
in case of regressors.

In the same fashion as for INGARCH models, different thinning based models can
be specified by INARMAModel, INARModel and INMAModel. The former contains the
following entries:

5

Table 2: INARMAModel - Model Specification

Variable Type Description

distr Array{String, 1} Conditional distributions
link Array{String, 1} Link functions
pastObs Array{Integer, 1} Past observations included
pastMean Array{Integer, 1} Past means included
X Array{Abstract Float, 2} Regressor matrix
external Array{Bool, 1} Are regressors external?
zi Bool Zero inflation

In contrast to the INGARCH models, two distributions are specified for D1 and D2

as well as two link functions f1 and f2 in definition 2. The specification INARModel has
no entry pastMean and INMAModel has no entry pastObs.

Implementing model types and subtypes like that allows to define functions based
on the model and use multiple dispatch. For example, likelihood evaluation of an
INGARCH(1, 1) model requires a loop, while it does not for INARCH models. A
likelihood function can be implemented for the general class of INGARCH models and
a more specific version, potentially more efficient, for INARCH models.

To create an object that specifies a model, the user can either use constructors,
for example calling INGARCHModel as function and giving the entries as input or use
the wrapper function Model. The advantage of a wrapper function is that it can be
implemented for any type of input and default values can be given. Table 3 summarizes
the input of Model() and its default values. If no input is given, the function returns a
model specification for IID Poisson distributed variables, no regressors and no zero infla-
tion. The argument model gives the general framework, either "INGARCH" or "INARMA",
distr gives the conditional distribution(s), either "Poisson" or "NegativeBinomial".
Thereby, it can be either the string itself of a vector of strings for example in case of
an INARMA model with regressors. The same holds for the link function(s), which
can be either "Linear" or "Log". As input for this wrapper function, the regressors
can be a vector if there is only one regressor, or - in case of multiple regressors, as
matrix where it does not matter if regressors are collected column-wise or row-wise.
The function aims at correcting the input as good as possible, for example specifying
which past observations are used in the conditional mean of an INGARCH needs to be
given in the INGARCHModel struct as vector of integers. The wrapper function also
accepts scalars or ranges given by 1:3 or such. The output of Model() is an object of
type INGARCHModel, INARCHModel, IIDModel, INARMAModel, INARModel or INMAModel.
Thereby, Model(pastObs = 1) returns an object of type INARCHModel rather than of
type INGARCHModel with q = 0.

6

Table 3: Model - Wrapper function to create count model specification

Input Type Default Description

model undefined "INGARCH" Framework
distr undefined "Poisson" Conditional distribution(s).
link undefined "Linear" Link function
pastObs undefined [] Past observations included
pastMean undefined [] Past means included
X undefined [] Regressor matrix
external undefined [] Are regressors external?
zi undefined false Zero inflation

Output

unnamed <:CountModel Model specification

To parametrize a model, another structure is defined, which is summarized in Table
4. This structure is an alternative to merging all parameters to one vector and run
into danger of loosing track of the mapping. However, it might be handy to work with
parameters as a vector, for example during maximization of the likelihood. For that
reason, two functions are introduced that switch between the two ways of parametriza-
tion. These functions are described in Tables 5 and 6.

Table 4: parameter - Parameters of a Count Model

Variable Type Description

β0 AbstractFloat Intercept
α Array{AbstractFloat, 1} Coefficients of past observations
β Array{AbstractFloat, 1} Coefficients of past means
η Array{AbstractFloat, 1} Coefficients of regressors
φ Array{AbstractFloat, 1} Overdispersion parameters
ω AbstractFloat Zero inflation probability

7

Table 5: θ2par - Mapping between parameter vector and struct

Input Type Description

θ Array{AbstactFloat, 1} Parameter vector
model CountModel Model specifications

Output

pars parameter Parameters (struct)

Table 6: par2θ - Mapping between parameter struct and vector

Input Type Description

pars parameter Parameters (struct)
model CountModel Model specifications

Output

θ Array{AbstractFloat, 1} Parameter vector

When working with certain models, there might be parameter restrictions to ensure
stationarity and positivity of conditional means as well as overdispersion parameters.
In any case, φ > 0 and ω ∈ [0, 1] must hold. For an INGARCH with linear link,
the restrictions are β0 > 0, αi ≥ 0, βi ≥ 0, ηi ≥ 0, and

∑p
i=1 αi +

∑q
i=1 βi < 1.

For an INGARCH with log-linear link, the restrictions are |αi| < 1, |βi| < 1 and
|
∑p

i=1 αi +
∑q

i=1 βi| < 1.
For the INARMA model, αi ≥ 0 and βi ≥ 0 must always hold and additionally,∑p

i=1 αi ≤ 1. The coefficients of regressors must be non-negative if the corresponding
link function is the identity link.

To check if parameters are valid for a given model, a function parametercheck is
introduced, see Table 7. Different methods are implemented for the function depending
on the model and the type of parameter input (parameter struct or vector). Multiple
dispatch is utilized, so a wrapper function is not needed.

8

Table 7: parametercheck - Check for validity of parameters

Input Type Description

θ parameter or Array{AbstractFloat, 1} Parameters
model CountModel Model specifications

Output

unnamed Bool Are parameters valid?

3.2 Simulate Time Series

Before introducing a function to create artificial time series from above frameworks,
the thinning operator ◦ is implemented in Julia in different ways. First, the binomial
thinning is defined as described before. In Julia the expression p◦X for a given p ∈ [0, 1]
and integer X performs the binomial thinning. An extension using a common random
number u is implemented as ◦(p, X, u). Alternatively, thinning may be defined for
a distribution d and an integer X as

d ◦ X =
X∑
i=1

Zi Zi
iid∼ d .

Again, a version using a common random number u is added as ◦(d, X, u). A last
generalization for any distribution dI and an integer distribution dO is introduced such
that dI ◦ dO computes

∑X
i=1 Zi with X distributed according to dO and Zi are iid

distributed according to dI.
Next, the function simulate is described, summarized in Table 8. It contains dif-

ferent methods separated by model type and type of parameters (given as vector or
struct). Only valid parameters are accepted. The conditional mean process of an
INGARCH process is initialized by its marginal mean, the first observations of an IN-
ARMA process are simulated without autocorrelation. Then T + burnin observations
are generated and the first burnin observations discarded. Alternatively, the user
can set the first observations with the argument pinfirst. This can for example be
helpful when simulating time series with regressors. Ignoring regressors during the
burnin phase may lead to a time series that levelled off incorrectly. If pinfirst is not
specified and a time series with regressors shall be created, the default setting is to use
the regressors for t = 1 during the burnin.

9

Table 8: simulate - Simulate Time Series

Input Type Description

T Integer Length of time series
model CountModel Model specification
θ parameter or Array{AbstractFloat, 1} Parameters
burnin Integer Burnin phase (default 500)
pinfirst Array{Integer, 1} Pin first values of time series

Output

y Array{Integer, 1} Simulated time series
λ Array{AbstractFloat, 1} Conditional means (INGARCH)
ν Array{AbstractFloat, 1} See model definition (INGARCH)
λzi Array{AbstractFloat, 1}} Conditional means with ZI (INGARCH)
R Array{Int64, 1} Innovation process (INARMA)

3.3 Likelihood Computation

Estimation and inference in the scope are - up to now - likelihood based exclusively.
To prepare a likelihood function, some functions are defined first. For the INGARCH
framework, one internal function called LinPred is introduced. Its use is to compute
the linear predictors λt and νt, given a model and parameters. Different methods are
implemented depending on the model. As it is only used internally, parameters are
only accepted as structure. Due to repeated calls during likelihood maximization, the
focus for this function is on its efficiency. An argument initiate specifies how the
first linear predictors are computed. "first" sets it to the first observation of the
time series, "intercept" sets the first values to the expectation if αi = 0 and βi = 0,
whereas "marginal" sets the first values to the marginal mean.

The thinning based INARMA process defined the observable process Yt as a sum of
different components. Thus, for likelihood computation given the distributions of the
single components, a convolution function is needed. For two discrete random variables,
say X1 and X2, the function convolution computes the distribution of X1 + X2. As
input it needs a vector of probabilities (P (X1 = 0), P (X1 = 1), ..., P (X1 = k))′ and
(P (X2 = 0), P (X2 = 1), ..., P (X2 = k))′ and gives out P (X1 + X2 = i) for i = 1, ..., k.
Another internally used function called GetProbFromP is defined. It takes a matrix P

∈ RM+1,K of probabilities Pij = P (Xj = i) as input and returns the probability vector
P (X1 + ... + XK = i) with i = 0, ...,M . Both convolution functions are implemented
with focus on efficiency.

The log-likelihood function ll, see Table 9, is then defined. For any model besides
INARMA(p, q) where q ≥ 3, it computes the log-likelihood as well as the contributions
of single observations to the log-likelihood. This enables to compute for example in-

10

formation criteria on the basis of the same number of observations in case of different
model orders, dropping the same first observations.

Table 9: ll - Computation of Log-Likelihood

Input Type Description

y Array{AbstractFloat, 1} Time series
model CountModel Model specification
θ parameter Parameters
initiate String Initialization method (INGARCH)

Output

LL Float64 Log-Likelihood
LLs Array{Float64, 1} Contributions to log-likelihood

3.4 Estimation Settings

To prepare the estimation function, two structures are defined, which unify the estima-
tion settings and the reporting of results. Estimation settings are defined as structure
MLEControl, see Table 10. It collects information about initial values for the maximiza-
tion, the maximization procedure and an the choice whether confidence intervals shall
be computed or not. Optimizing routines are - up to now - limited to "NelderMean",
"BFGS" and "LBFGS". Additionally a wrapper function MLESettings, see Table 11,
makes specification easier. The initial values can either be given by the user in form of
a vector or parameter struct. As a default if not put in, the initial values are chosen in
a way that matches theoretical marginal mean and sample mean of the time series. If
the given or default initial values result in an infinite likelihood, a random search for
starting values is carried out.

Table 10: MLEControl - Estimation Settings

Variable Type Description

init parameter Initial values
optimizer String Maximization method
ci Bool Shall confidence intervals be computed
maxEval Integer Maximum number of likelihood evaluations

11

Table 11: MLESettings - Create Object for Estimation Settings

Input Type Description

y Array{AbstractFloat, 1} Time series
model CountModel Model specification
init parameter or Array{AbstractFloat, 1} Initial parameters
optimizer String Optimizing routine
ci Bool Compute confidence intervals?

Output

unnamed MLEControl Estimation Settings

If the distribution or link function is misspelled or simply unknown, it gives out a
warning that the default is used. If the string specifying an optimization function is
misspelled or unknown, the BFGS method is used as default and a warning is printed
again. It returns an error if one of the following occurs: The size of external does
not match the number of rows in X. The length of y does not match the number of
columns in X. The parameters given in init does not match the number of parameters
for the specified model or the initial parameters init are not valid.

Two unified structures of estimation results is defined next. They shall contain
every information needed to assess model choice and perform predictions afterwards.
The two structures INGARCHResults and INARMAResults hold the entries given in
Tables 12 and 13

Table 12: INGARCHResults - Result Specification

Variable Type Description

y Array{Integer, 1} Time series
θ Array{AbstractFloat, 1} Estimated parameters (vector)
pars parameter Estimated parameters (struct)
λ Array{AbstractFloat, 1} Conditional means
residuals Array{AbstractFloat, 1} Residuals
LL AbstractFloat Maximum log-likelihood
LLs Array{AbstractFloat, 1} Log-likelihood contributions
nPar Integer Number of parameters
nObs Integer Number of observations
se Array{AbstractFloat, 1} Standard errors
CI Array{AbstractFloat, 2} Confidence intervals
model INGARCH Model specifications
converged Bool Has maximization converged?
MLEControl MLEControl Estimation settings

12

Table 13: INARMAResults - Result Specification

Variable Type Description

y Array{Integer, 1} Time series
θ Array{AbstractFloat, 1} Estimated parameters (vector)
pars parameter Estimated parameters (struct)
LL AbstractFloat Maximum log-likelihood
LLs Array{AbstractFloat, 1} Log-likelihood contributions
nPar Integer Number of parameters
nObs Integer Number of observations
se Array{AbstractFloat, 1} Standard errors
CI Array{AbstractFloat, 2} Confidence intervals
model INGARCH Model specifications
converged Bool Has maximization converged?
MLEControl MLEControl Estimation settings

3.5 Estimation

The function to estimate parameters of a given model and conduct inference, fit, is
summarized in Table 14. The maximization of the log-likelihood is done numerically
using the Optim package. Restriction of parameter space are taken into account by
returning negative infinity if parameter input is invalid. In case of an INGARCH
process, the user might use the Quasi-Poisson estimation introduced by Christou and
Fokianos (2014). Therefore, a Poisson estimation must be computed first and the
results forwarded to the function QPois, which takes only the estimation results as
input and changes them. The overdispersion parameter is then estimated by solving

T∑
t=max{P,Q}+1

(yt − λ̂t)2

λ̂t − λ̂2t
φ

= T − P −Q− r − 1

for φ. Thereby λ̂t is the conditional mean at time t using the estimated parameters, P
and Q are the highest lags considered for past observations and past means respectively.
In case of non-consecutive lags, these differ from p and q.

In case confidence intervals shall be computed, the Calculus package provides
methods to approximate the Hessian numerically giving standard errors. For user
convenience, a summary of estimation results is optionally and by default printed to
the console. In similar fashion as in R asterisks printed represent a level of significance
from zero, one asterisk for a p-value below 5%, two for a p-value below 1% and three
if the p-value is below 0.1%. For a linear link, these indicators are hardly meaningful,
because testing for example α1 > 0 implies that the parameter is on the border of
admissible parameter space under the null hypothesis, and the method of inference is
invalid.

13

Table 14: fit - Estimation Function

Input Type Description

y Array{Integer, 1} Time series
model CountModel Model specification
MLEControl MLEControl Estimation settings (optional)
printResults Bool Print results? (optional)
initiate String Initialization method (optional)

Output

results INGARCHResults or INARMRAResults Results

3.6 Model Diagnostics

To check for model accuracy, two different tools were implemented in CountTimeSeries.
First, different information criteria are provided, namely AIC, BIC and HQIC, which
all need only the results from estimation as necessary input and optional the integer
argument dropfirst, see Table 15. This allows to compare information criteria for
models of different order.

Table 15: AIC, BIC, HQIC - Information Criteria

Input Type Description

results INGARCHResults or INARMAResults Results of estimation
dropfirst Integer Number of observations to be

ignored for log-likelihood

Output

ic AbstractFloat AIC, BIC or HQIC

Another way to asses model choice is the non-randomized PIT histogram introduced
by Czado et al. (2009). Conditional distributions and the observed outcomes are
compared and transformed giving a histogram which is uniform distributed if the model
choice is correct.

Let Pt(y) = P(Yt = y|Ft−1) denote the conditional distribution of Yt given the
processes past. The PIT function Ft : [0, 1]→ R+ is defined as

Ft(u|y) =


0 u ≤ Pt(y − 1)
u−Pt(y−1)

Pt(y)−Pt(y−1) if Pt(y − 1) < u < Pt(y)

1 u ≥ Pt(u)

14

and the mean PIT function as

F̄ (u) =
1

T

T∑
t=1

Ft(u|yt)

for u ∈ [0, 1]. In a last step, heights of bins fh with h = 1, ..., H in the PIT histogram
is calculated as

fh = F̄

(
h

H

)
− F̄

(
h− 1

H

)
Because of the cumbersome computation of the distribution of Yt given the processes
past for an INARMA with q > 0, the pit histogram only supports INAR models up
to now. In the CountTimeSeries package, a function pit is provided, where the users
can input the results of an estimation conveniently, choose the number of bins to be
plotted (with ten as default) and a level of significance to test the uniform distribution.
For level = 0, no confidence region of bins is plotted, to obtain the 95% confidence
region, level needs to be set to 0.95.

Table 16: pit - Non-Randomized PIT histogram

Input Type Description

results INGARCHResults or INARMAResults Results of estimation
nbins Integer Number of bins
level AbstractFloat ∈ [0, 1) Level of significance

Output

unnamed Array{AbstractFloat, 1} height of bins

3.7 Prediction

After choosing a suitable model and fitting it to an observed time series, the user
might be interested in predicting the future course of the time series. Forecasting
can be performed deterministically in case of an INGARCH framework. For a one-
step ahead forecast given the time series up to t = T , ŶT+1|T , the conditional mean
of YT+1 is used. To forecast further, unobserved YT+1, YT+2, ... are replaced by their
corresponding prediction. For INARMA models and if prediction intervals shall be
computed, predictions can be found by a parametric bootstrap. The user may specify
the number of time series being simulated by the argument nChains. The mean across
all chains is used as point prediction, quantiles approximate 95% prediction intervals.
When regressors are included in the model specification, their values for observations
to be predicted must be provided. The gray rows in Table 17 indicate which arguments
only need to be given for a simulation based prediction and also what output is given
in that case.

15

Table 17: predict - Prediction Function

Input Type Description

results Rspec Results from estimation
h Mspec Model specification
nChain Int64 Prediction horizon
Xnew Array{Float64, 2} New regressors

Output

pred Array{Float64, 1} Predicted values
Qmat Array{Float64, 2} 95% Prediction intervals
predMat Array{Float64, 2} Matrix of prediction chains

4 Outlook

The Julia package presented here is designed to cover a broad collection of count data
time series models that are frequently used in practice. Fast computation time and a
suitable infrastructure make simulation studies possible. The modular skeleton on the
package allows for easy extension. Planned, but not yet realized are the following:
Theoretical moments for different model specifications serve two purposes. Firstly,
they can be used to compare theoretical moments for a fitted model with their sample
counterparts. Secondly, once such functions are implemented, a GMM estimation can
be added as an alternative to likelihood based methods.
Conceivable is also to add the option of Bayesian estimation to the package. To incorpo-
rate the infrastructure of a Metropolis-Hastings or Gibbs-Sampling, only one wrapper
function would need to be extended.
In a similar way to existing R packages, an outlier detection function could further be
added. Closely related to it and a possible extension are robust estimation techniques.
Making multivariate count data time series modeling possible would also be an inter-
esting add-on to the package.

16

References

[Alzaid and Al-Osh 1988] Alzaid, A.A. ; Al-Osh, M.: First-Order Integer-Valued
Autoregressive (INAR(1)) Process: Distributional and Regression Properties. In:
Statistica Neerlandica 41 (1988), Nr. 1, 53–60. http://www.jstor.org/stable/

3214650. – ISSN 00219002

[Christou and Fokianos 2014] Christou, V. ; Fokianos, K.: Quasi-Likelihood Infer-
ence for Negative Binomial Time Series Models. In: Journal of Time Series Anal-
ysis 35 (2014), Nr. 1, 55-78. http://dx.doi.org/10.1111/jtsa.12050. – DOI
10.1111/jtsa.12050

[Czado et al. 2009] Czado, C. ; Gneiting, T. ; Held, L.: Predictive Model
Assessment for Count Data. In: Biometrics 65 (2009), Dezember, Nr. 4,
1254-1261. http://dx.doi.org/10.1111/j.1541-0420.2009.01191.x. – DOI
10.1111/j.1541–0420.2009.01191.x

[Dungey et al. 2019] Dungey, M. ; Martin, V.L. ; Tang, C. ; Tremayne, A.: A
threshold mixed count time series model: estimation and application. In: Studies
in Nonlinear Dynamics & Econometrics 24 (2019), Nr. 2. http://dx.doi.org/10.
1515/snde-2018-0029. – DOI 10.1515/snde–2018–0029

[Ferland et al. 2006] Ferland, R. ; Latour, A. ; Oraichi, D.: Integer-Valued
GARCH Process. In: Journal of Time Series Analysis 27 (2006), nov, Nr. 6,
S. 923–942. http://dx.doi.org/10.1111/j.1467-9892.2006.00496.x. – DOI
10.1111/j.1467–9892.2006.00496.x

[McKenzie 1985] McKenzie, E.: Some Simple Models for Discrete Variate Time
Series. In: Journal of the American Water Resources Association 21 (1985), Nr. 4,
645–650. http://www.jstor.org/stable/3214650. – ISSN 00219002

[Weiß et al. 2019] Weiß, C. ; Feld, M. ; Khan, N. ; Sunecher, Y.: INARMA
Modeling of Count Time Series. In: Stats 2 (2019), Juni, Nr. 2, 284-320. http:

//dx.doi.org/10.3390/stats2020022. – DOI 10.3390/stats2020022

17

http://www.jstor.org/stable/3214650
http://www.jstor.org/stable/3214650
http://dx.doi.org/10.1111/jtsa.12050
http://dx.doi.org/10.1111/j.1541-0420.2009.01191.x
http://dx.doi.org/10.1515/snde-2018-0029
http://dx.doi.org/10.1515/snde-2018-0029
http://dx.doi.org/10.1111/j.1467-9892.2006.00496.x
http://www.jstor.org/stable/3214650
http://dx.doi.org/10.3390/stats2020022
http://dx.doi.org/10.3390/stats2020022

	Introduction
	Framework
	INGARCH(p, q)
	INARMA(p, q)

	Functions and Structures
	Model Specification and Parameters
	Simulate Time Series
	Likelihood Computation
	Estimation Settings
	Estimation
	Model Diagnostics
	Prediction

	Outlook

