INFORMS JOURNAL ON COMPUTING |NFORMS

Vol. 00, No. 0, Xxxxx 0000, pp. 000-000 DOI1 10.1287 /xxxx.0000.0000
1SSN 0899-1499 | EISSN 1526-5528 | 00 | 0000 | 0001 © 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

SDDP. j1: a Julia package for stochastic dual dynamic
programming

Oscar Dowson

Department of Industrial Engineering and Management Sciences at Northwestern University, Evanston, IL, USA,
oscar.dowson@northwestern.edu

Lea Kapelevich
Operations Research Center at the Massachusetts Institute of Technology, Cambridge, MA, USA, lkap@mit.edu

We present SDDP. j1, an open-source library for solving multistage stochastic programming problems using
the stochastic dual dynamic programming algorithm. SDDP.jl is built upon JuMP, an algebraic model-
ing language in Julia. JuMP provides SDDP.jl with a solver-agnostic, user-friendly interface. In addition,
we leverage unique features of Julia, such as multiple-dispatch, to provide an extensible framework for
practitioners to build upon our work. SDDP. j1 is well-tested, and accessible documentation is available at

https://github.com/odow/SDDP. j1.

Key words: julia; jump; stochastic dual dynamic programming

1. Introduction
Multistage stochastic programming is a structured way of modeling and solving sequential
decision problems under uncertainty. Due to the large number of outcomes that are pos-
sible as a random process evolves over time, multistage stochastic programs are difficult
to solve. One state-of-the-art solution technique for conver multistage stochastic program-
ming problems is stochastic dual dynamic programming (SDDP) (Pereira and Pinto 1991).
Since the seminal work of Pereira and Pinto (1991), SDDP has been widely used to
solve problems in both academia and industry, and the original paper has been cited more
than 1000 times. Most famously, SDDP is used in production to set power prices in Brazil

(Maceira et al. 2008, 2018).



Dowson and Kapelevich: SDDP. jl: a Julia package for stochastic dual dynamic programming
2 INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS

However, until recently, no open-source, generic implementations of the algorithm existed
in the public domain. (We discuss recent implementations in Section 6.) Instead, prac-
titioners were forced to code their own implementations in a variety of languages and
styles. Closed-source research implementations include those in AMPL (Guan 2008), C++
(Helseth and Braaten 2015), GAMS (Ourani et al. 2012), Java (Asamov and Powell 2018),
and MATLAB (Parpas et al. 2015), as well as in commercial products in Fortran and Julia
(PSR 2019) and Java (Quantego 2019).

In our opinion, this “re-invention of the wheel” and the large up-front cost to devel-
opment has limited the adoption of the SDDP algorithm in areas outside the electricity
industry (which is the focus of most researchers). Moreover, many researchers develop and
test new algorithmic improvements without being able to easily compare their ideas against
other implementations, or to the current state-of-the-art.

This paper presents SDDP. j1—a state-of-the-art implementation of the SDDP algorithm
in Julia (Bezanson et al. 2017). The key feature of SDDP. j1 is that it decouples the solution
algorithm from the modeling framework. We achieve this decoupling by building SDDP. j1
on-top-of JuMP (Dunning et al. 2017), an algebraic modeling language in Julia. JuMP
enables SDDP. j1 to provide a high-level interface for the user, while simultaneously pro-
viding performance that is similar to implementations in low-level languages.

By providing a free, open-source implementation of the SDDP algorithm, SDDP. j1 has
lowered the barriers to entry for practitioners looking to solve multistage stochastic pro-
gramming problems. This view is best summarized in the following quote from Reus et al.
(2019), who used SDDP. j1 to solve a mine planning problem:

SDDP is a complex algorithm that requires computational skill and experience to
implement reliably and efficiently. The effort of implementing SDDP from scratch has
probably precluded its wider adoption in other areas such as transportation, forestry,
oil and gas and agriculture. The new library SDDP. j1 ... bridges this gap by offering an
efficient in-built implementation of the algorithm, inviting the user to focus exclusively
on the modeling aspects of the problem.

The rest of this paper is structured as follows. In Section 2, we discuss how to model
a multistage stochastic program to make it amenable to solution by SDDP.jl. Then, in
Section 3, we briefly sketch the SDDP algorithm. In Section 4, we provide a worked example
of modeling and solving a simple hydro-thermal scheduling problem using SDDP. jl. In



Dowson and Kapelevich: SDDP. ji: a Julia package for stochastic dual dynamic programming
INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS 3

Section 5, we describe some of SDDP. jl’s state-of-the-art features. We conclude with a
comparison of SDDP. j1 to alternative libraries in Section 6.

This paper is not intended to be a comprehensive tutorial for SDDP. j1. Instead, readers
are directed to https://github.com/odow/SDDP. j1 for source-code, examples, tutorials,

and documentation.

2. Modeling multistage stochastic programs

Before we can begin to solve multistage stochastic programming problems using SDDP. j1,
we must define what they are. SDDP. j1 uses the policy graph formulation of a multistage
stochastic program introduced by Dowson (2020).

A policy graph, G = (R,N, &, ®), contains a root node R, a further set of nodes N/, and a
set of directed edges, £, connecting the nodes. For each node i € N/, we seek a decision rule,
m;(z,w), that maps the incoming state variable x and realization of a nodewise-independent
noise w to a feasible control u. The set of feasible controls is denoted by U;(x,w), and
depends on the state variable and noise realization. The noise w is a random variable drawn
from a sample space §); with probability mass function P(w € €2;). Nodewise-independent
means that realizations of w are independent of x and of the realizations of w at all other
nodes. As a result of choosing a control u, the incoming state x transitions to the outgoing
state variable x’, according to a transition function x' =T;(x,u,w), and the agent incurs a

cost C;(z,u,w). Figure 1 shows a visualization of the components in each node i € V.

Qi w
\’\ —
x u=m;(z,w) x
' =T(x,u,w)
1
Ci(.I,U,LU)

Figure 1 Schematic of a node in a policy graph.

In the policy graph, an |[N|+1 by |]N| matrix ® specifies transition probabilities between
nodes, with entries ¢;;. Given a node i € N'U{R}, for each edge (i,7j) € £ we transition
to node j € N with probability ¢;; > 0. If no edge exists, then ¢;; = 0. Since the edges
represent probabilities, J(ig)eE ¢i; < 1. This inequality accounts for discount factors; see
Dowson (2020) for details. We say that the children of node i are the elements in the set
it ={j:¢;; >0}, and i is a leaf node if it = @.



Dowson and Kapelevich: SDDP. jl: a Julia package for stochastic dual dynamic programming
4 INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS

Using this notation, a multistage stochastic program seeks an optimal decision rule,
mi(z,w), for each node i € N/, that minimizes the expected cost at the root node over all
node transitions R — ¢ € R™ and realizations of the noise w from ;:

min E [Vi(zg,w)], (1)

T deRt; we;

where x g is the initial state vector, and:
Vilz,w) =Ci(z,u,w)+ T [Vi(a', )],
Jeit; peQ;
where u = m;(z,w)€ Ui(x,w), 2’ = T;(z,u,w), and F; is a coherent risk measure (Artzner
et al. 1999). The collection of decision rules m = {71, 7a,...,mnq} is referred to as a policy.

There are a few special-case policy graphs. First, if there are T" nodes indexed from
t=1,...,T, and each node has at most one child such that ¢,;; =1, then we say that the
policy graph is linear. This corresponds to a traditional T-stage stochastic program in the
literature. Second, if the nodes and transition matrix form a Markov chain, we say that
the policy graph is Markovian. Finally, we differentiate between graphs that are cyclic and
those that are acyclic. Cyclic policy graphs are infinite horizon stochastic programs, while
acyclic policy graphs are finite horizon stochastic programs.

It is important to note that the nodes in a policy graph to not correspond to the nodes
in a scenario tree. A stagewise-independent scenario tree with 7" stages and K realizations
in each stage (i.e., KT total nodes) corresponds to a linear policy graph with T nodes and
1€2;| = K. See Dowson (2020) for a larger discussion on the correspondence between policy

graphs and scenario trees.

3. Solving multistage stochastic programs

Multistage stochastic programs are difficult to solve. One algorithm that has proven effi-
cient at solving large scale problems is the stochastic dual dynamic programming (SDDP)
method of Pereira and Pinto (1991). SDDP is a sampling-based version of the nested
decomposition algorithm (Birge 1985). It can also be viewed as a value-function approxi-
mation algorithm (Powell 2016) in the spirit of value iteration (Howard 1960), approximate
linear programming (de Farias and van Roy 2003), and approximate dynamic programming
(Powell 2011), in which we exploit the structure of the problem through linear program-

ming duality to find provably optimal basis functions. Since SDDP is well-studied in the



Dowson and Kapelevich: SDDP. ji: a Julia package for stochastic dual dynamic programming
INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS 5

literature, we will not give a full description of the algorithm in this paper; instead, we
will provide a brief sketch of the main ideas. Readers are directed to Dowson (2020) for a
full description of the algorithm as implemented in SDDP. j1.

First, using Bellman’s principle of optimality (Bellman 1957), the decision rule m; can

be formulated as the arg min of the following optimization problem:

Vi(z,w) =
min C;(Z,u,w)+ T Vi(z', )]
U, jeit; peQ;
st.x=x (2)

' =T)(Z,u,w)

u e Ui(f,W),

where decision rule 7;(z,w) takes the value of u in an optimal solution.

However, as formulated, (2) is intractable. Therefore, SDDP forms an approximation
of the subproblem (2) for every node i in the policy graph. In this approximation, the
expectation term is replaced by a variable # and approximated from below by a set of linear
basis functions called cuts. SDDP is an algorithm that iteratively refines the approximation.

After K iterations the approximated version of model (2) is as follows:

Vi (z,w) =
rpirlle Ci(Z,u,w)+ 6
st.z=ux [A]

' =T(z,u,w)

ue U(z,w)

0>a+89 2 k=1,... K
0> —M,

where M is a sufficiently large real number. Note that we add the so-called fishing con-
straint & =« to simplify the computation of the dual variable \.

Each iteration of SDDP consists of two phases: (i) a forward pass, which samples a
sequence of nodes and realizations of the node-independent noise terms and then generates
a sequence of values for the state variables at which new cuts are computed; and (ii) a
backward pass, which constructs a new cut at each value of the state variables from the

forward pass. Under mild sampling assumptions (notably, independence of the forward



Dowson and Kapelevich: SDDP. jl: a Julia package for stochastic dual dynamic programming
6 INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS

passes), this algorithm has been shown to converge to an optimal policy almost surely in
a finite number of iterations (Philpott and Guan 2008, Shapiro 2011, Guigues 2016).

The approximation formed by SDDP is only valid if V;(x,w) is convex with respect to x.
Therefore, in order to guarantee convergence, a number of assumptions are needed. Given
a policy graph G = (R, N, &, ®), the main assumptions are:

(A1) The number of nodes in N is finite.

(A2) The sample space €; of random noise outcomes is finite at each node i € V.

(A3) Given fixed w and z, and excluding the risk-adjusted expectation term F;[-], sub-
problem (2) associated with each node i € N can be formulated as a convex programming
problem.

(A4) For every node i € N/, there exists a bounded and feasible optimal control u for
every achieved incoming state x and realization of the noise w.

(A5) For every node i € N, the sub-graph rooted at node i has a positive probability of
reaching a leaf node.

Assumption (A3) requires some additional technical assumptions, such as an appropriate
constraint qualification; see Girardeau et al. (2015) for details. Assumption (A3) can be
weakened further to include problems with binary state variables. This results in the so-
called SDDiP method of Zou et al. (2019). The SDDiP method is implemented in SDDP. j1,
but we omit a description in the interest of brevity.

Notably, Assumption (A5) allows the modeling and solution of discounted-cost infinite-

horizon stochastic programs; see Dowson (2020) for details.

4. An example using SDDP. j1
In this section, we provide the reader with a brief demonstration of SDDP. j1’s ease-of-use
by means of a simplified hydro-thermal scheduling example.

In a hydro-thermal problem, the agent controls a hydro-electric generator and reservoir.
At each time period, they need to choose a generation quantity from thermal g;, and hydro
gn, in order to meed demand wy, which is a stagewise-independent random variable. The
state variable, x, is the quantity of water in the reservoir at the start of each time period,
and it has a minimum level of 5 units and a maximum level of 15 units. We assume that
there are 10 units of water in the reservoir at the start of time, so that xzr = 10. The

state-variable is connected through time by the water balance constraint:

/
T =T —gn—S+uwi



Dowson and Kapelevich: SDDP. ji: a Julia package for stochastic dual dynamic programming
INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS 7

where 2’ is the quantity of water at the end of the time period, x is the quantity of water
at the start of the time period, s is the quantity of water spilled from the reservoir, and
w; is a stagewise-independent random variable that represents the inflow into the reservoir
during the time period.

We assume that there are three stages, t = 1,2, 3, and that we are solving this problem in
an infinite-horizon setting with a discount factor of 0.95. The structure of the policy graph

is visualized in Figure 2, where the numbers on the arcs are the transition probabilities

¢ij-

(D u

0.95

Figure 2 Policy graph of the hydro-thermal scheduling example.

In each stage, the agent incurs the cost of spillage, plus the cost of thermal generation.
We assume that the cost of thermal generation is dependent on the stage t =1,2,3, and

that in each stage, w = (w;,wy) is drawn from:
2={(0,7.5),(3,5),(10,2.5)}

with equal probability.
Putting everything together, and ignoring the expectation term, the subproblem at each

stage t can be formulated as follows:

Vi(r,w) = min s+txg,

z,x’,s,9

st.r=ux
=T+ gn+s=w; (3)
Ih+ gt =
5<2' <15

9hy Gty S 2 07

and the problem faced by the agent is minE [V} (10, w)].
The driving principle behind the design of SDDP. j1 is to represent model (3) as a JuMP
model parameterized by the incoming state variable z and the realization of the stagewise

independent random variable w. This is achieved by extending some of the features of JuMP



Dowson and Kapelevich: SDDP. jl: a Julia package for stochastic dual dynamic programming
8 INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS

to introduce state variables, and to allow the parameterization of the JuMP model by w.
Where new methods and macros have been added (for example, adding state variables), we
have tried to stay close to the syntactic feel of JuMP. These modifications typically produce
standard JuMP constructs that are visible to the user (for example, a state variable is just
a JuMP variable), along with some additional SDDP specific information that is hidden
from the user (for example, how to link state variables between stages). Behind the scenes,
SDDP. j1 handles the expectation term in the objective, adds the fishing constraint z = x,
manages the realizations of the random variable w, and passes the values of the state
variables between nodes. Complete code to implement example (3) in SDDP. j1 is given in
Figure 3.

The first part of Figure 3 declares a linear policy graph with three nodes (with ¢q; =
¢12=¢2,3=1), and then adds an additional arc from node 3 to node 1 with probability
0.95, creating a cyclic policy graph. Much of the macro code (i.e., lines starting with @)
in the first part of Figure 3 should be familiar to users of JuMP. Inside the do-end block,
sp is a standard JuMP model, and t is an index for the state variable that will be called
with t = 1, 2, 3. The state variable x, constructed by passing the SDDP.State tag to
@variable, is actually a Julia struct with two fields: x.in and x.out, corresponding to
the incoming and outgoing state variables respectively. Both x.in and x.out are standard
JuMP variables. The initial value keyword provides the value of the state variable
in the root node (i.e., zg). Compared to a JuMP model, one key difference is that we
use @stageobjective instead of Gobjective. The parameterize function takes a list of
supports for w and parameterizes the JuMP model sp by setting the right-hand sides of
the appropriate constraints (note how the constraints initially have a right-hand side of 0).
By default, it is assumed that the realizations have uniform probability, but a probability
mass vector can also be provided.

Once a model has been constructed, the next step is to train the policy. This can be
achieved using the SDDP.train method. There are many options that can be passed, but
iteration limit terminates the training after the prescribed number of SDDP iterations.
After training, we can simulate the policy. This is achieved using the SDDP.simulate
function. Finally, we can use the SDDP.ValueFunction and SDDP.evaluate functions to
obtain and evaluate the value function at different points in the state-space. We find that
on average, 2.37 units of thermal are generated in the first stage, and the marginal value

of water at the end of the first stage is $0.66 /unit.



Dowson and Kapelevich: SDDP. ji: a Julia package for stochastic dual dynamic programming
INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS 9

using SDDP, GLPK, Statistics
graph = SDDP.LinearGraph(3)
SDDP.add_edge(graph, 3 => 1, 0.95)
model = SDDP.PolicyGraph(
graph, sense = :Min, lower_bound = 0.0, optimizer = GLPK.Optimizer
) do sp, t
@variable(sp, 5 <= x <= 15, SDDP.State, initial_value = 10)
@variable(sp, g_t >= 0)
@variable(sp, g_h >= 0)
@variable(sp, s >= 0)
Q@constraint(sp, balance, x.out - x.in + g_h + s == 0)
@constraint(sp, demand, g_h + g_t == 0)
@stageobjective(sp, s + t * g_t)
SDDP.parameterize(sp, [[0, 7.5], [3, 5], [10, 2.5]]) do w
set_normalized_rhs(balance, w[1])
set_normalized_rhs(demand, w[2])
end
end
SDDP.train(model, iteration_limit = 100)
sims = SDDP.simulate(model, 100, [:g_t])
mu = round(mean([s[1][:g_t] for s in sims]), digits = 2)
println("On average, $(mu) units of thermal are used in the first stage.")
# output >>> On average, 2.37 units of thermal are used in the first stage.
V = SDDP.ValueFunction(model[1])
cost, price = SDDP.evaluate(V, x = 10)

# output >>> (233.53828121398493, Dict(:x=>-0.660014))
Figure 3 Solving the hydro-thermal example using SDDP. j1.

5. Advancing the state-of-the-art

SDDP. j1 includes many features that are not present in alternative software. These features
include the ability to model and solve models formulated as arbitrarily complicated policy
graphs using the algorithm of Dowson (2020), the objective-state interpolation method
of Downward et al. (2020) that allows practitioners to model some classes of interstage-
dependent price processes, and the distributionally robust risk measures of Philpott et al.
(2018). Perhaps most successfully, the distributionally robust risk measure of Philpott et al.
(2018) was implemented in less than 50 lines of code, demonstrating the ease with which

practitioners are able to build upon SDDP. j1 to advance the state-of-the-art.



Dowson and Kapelevich: SDDP. jl: a Julia package for stochastic dual dynamic programming
10 INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS

More recently, SDDP. j1 was extended to support partially observable multistage stochas-
tic programs, using the algorithm of Dowson et al. (2019). SDDP. j1 also supports multiple
ways of solving multistage stochastic integer programs, including the SDDiP algorithm of
Zou et al. (2019). Notably, these features are modular, and it is possible to combine them.
Therefore, it is possible to solve a distributionally robust, partially observable, infinite-
horizon, multistage stochastic integer program with a stagewise-dependent price process.

Other notable features of SDDP.jl that we have not discussed include a number of
plotting utilities to help users visualize the policy and the value function, tools to help
discretize stochastic processes into a policy graph, extensible schemes for modifying the
sampling behavior on the forward and backward passes (enabling, for example, an out-
of-sample simulation of the policy), and a function to convert a policy graph into the
monolithic deterministic equivalent. SDDP. j1 also utilizes Julia’s distributed computing
functionality to efficiently parallelize the training process.

Moreover, although rarely mentioned in the literature, SDDP is highly susceptible to
numerical issues. (As one example, some solvers treat tolerances in the presolve and main
simplex routines differently, leading to node j € it declaring that an “optimal” solution
for 2’ in node i is infeasible when 2’ is set as the right-hand side in node j.) Therefore,
SDDP. j1 contains a number of routines that attempt to detect and fix some numerical

issues, and SDDP. j1 warns users who provide models with poor numerical properties.

6. Comparison with other libraries
SDDP. j1 is not the only library for solving multistage stochastic programming problems
using SDDP. We briefly describe seven alternatives and contrast their abilities to SDDP. j1
A summary can be found in the Appendix. Five of the alternatives are open-source: FAST
(Cambier and Scieur 2019), msppy (Ding et al. 2019), StOpt (Gevret et al. 2016), StochDy-
namicProgramming.jl (Leclere et al. 2019), and StructDualDynProg.jl (Legat 2019). The
remaining two are commercial software: QUASAR (Quantego 2019), and the seminal SDDP
by PSR (PSR 2019). (PSR-SDDP is a single-purpose implementation for hydro-thermal
scheduling; we include it for comparison because it arose from the original implementation
of Pereira and Pinto (1991)).

Perhaps the most interesting observation is that half of the implementations are in Julia

(SDDP. j1, StochDynamicProgramming, StochDualDynProg.jl, and PSR’s SDDP). An even



Dowson and Kapelevich: SDDP. ji: a Julia package for stochastic dual dynamic programming
INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS 11

more interesting observation is that each of the authors began to develop an SDDP library
in Julia independently, and all within a few months of each other. This supports our belief
that the combination of Julia’s meta-programming and multiple dispatch abilities, as well
as the JuMP (Dunning et al. 2017) package and wider JuliaOpt ecosystem, are the ideal
foundation upon which to build an SDDP library.

When analysing features across different software, it is readily apparent that SDDP. j1 is
the most generic of the software, none the least because it is the only software to support
arbitrary cyclic policy graphs. The software with the closest feature support to SDDP. j1
is msppy, which can solve cyclic Markovian policy graphs and also implements the SDDiP
method. However, msppy only supports the Gurobi optimizer (and therefore is restricted
to quadratic, rather than general convex programs), and it cannot model non-Markovian

policy graphs.

7. Conclusions
This paper introduced SDDP.jl, a state-of-the-art open-source solver for multistage
stochastic programs. We believe the generality and ease-of-use of our library make it
an ideal tool for multistage stochastic programming practitioners. Readers are directed
to https://github.com/odow/SDDP. j1 for source-code, examples, tutorials, and detailed
documentation.

The roadmap for future development of SDDP. j1 includes improvements to the numer-
ical stability of the algorithm, and improvements to the way in which we handle general

multistage stochastic mixed-integer programs.

Acknowledgments
SDDP. j1 began development at the Electric Power Optimization Centre at the University of Auckland, and
we especially thank Andy Philpott and Anthony Downward for their input. We also thank Joaquim Garcia,
Vincent Leclere, Benoit Legat, Nils Lohndorf, and Francois Pacaud for discussing their implementations of
SDDP. The first author was supported, in part, by Northwestern University’s Center for Optimization &
Statistical Learning (OSL).

References
Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Mathematical Finance 9(3):203—
228.

Asamov T, Powell WB (2018) Regularized decomposition of high-dimensional multistage stochastic programs

with markov uncertainty. STAM Journal on Optimization 28(1):575-595.



Dowson and Kapelevich: SDDP. jl: a Julia package for stochastic dual dynamic programming
12 INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS

Bellman R (1957) Dynamic Programming (Princeton: Princeton University Press).

Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A Fresh Approach to Numerical Computing.
SIAM Review 59(1):65-98.

Birge JR (1985) Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs. Oper-
ations Research 33(5):989-1007.

Cambier L, Scieur D (2019) FAST. https://github.com/leopoldcambier /FAST, [Online; accessed 2019-12-18].

de Farias D, van Roy B (2003) The linear programming approach to approximate dynamic programming.

Operations Research 51(6):850-865.

Ding L, Ahmed S, Shapiro A (2019) A Python package for multi-stage stochastic programming. Optimization

Online .

Downward A, Dowson O, Baucke R (2020) Stochastic dual dynamic programming with stagewise-dependent
objective uncertainty. Operations Research Letters 48:33-39.

Dowson O (2020) The policy graph decomposition of multistage stochastic programming problems. Networks
1-21, URL http://dx.doi.org/10.1002/net.21932.

Dowson O, Morton DP, Pagnoncelli B (2019) Partially observable multistage stochastic programming. Opti-
mization Online Http://www.optimization-online.org/DB_HTML/2019/03/7141.html.

Dunning I, Huchette J, Lubin M (2017) JuMP: A Modeling Language for Mathematical Optimization. STAM
Review 59(2):295-320.

Gevret H, Langrené N, Lelong J, Warin X (2016) STochastic OPTimization library in C++. Technical report,
EDF.

Girardeau P, Leclere V, Philpott AB (2015) On the Convergence of Decomposition Methods for Multistage
Stochastic Convex Programs. Mathematics of Operations Research 40(1):130-145.

Guan Z (2008) Strategic Inventory Models for International Dairy Commodity Markets. PhD Thesis, Uni-
versity of Auckland, Auckland, New Zealand.

Guigues V (2016) Convergence Analysis of Sampling-Based Decomposition Methods for Risk-Averse Multi-
stage Stochastic Convex Programs. SIAM Journal on Optimization 26(4):2468-2494.

Helseth A, Braaten H (2015) Efficient Parallelization of the Stochastic Dual Dynamic Programming Algo-
rithm Applied to Hydropower Scheduling. Energies 8(12):14287-14297.

Howard R (1960) Dynamic Programming and Markov Processes (Cambridge, MA.: MIT Press).

Leclere 'V, Pacaud F, Rigaut T, Gerard H (2019) StochDynamicProgramming.jl.
https://github.com/JuliaOpt/StochDynamicProgramming.jl, [Online; accessed 2019-12-18].

Legat B (2019) StructDualDynProg.jl. https://github.com/blegat/StructDualDynProg.jl, [Online; accessed
2019-12-18].



Dowson and Kapelevich: SDDP. ji: a Julia package for stochastic dual dynamic programming
INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS 13

Maceira M, Penna D, Diniz A, Pinto R, Melo A, Vasconcellos C, Cruz C (2018) Twenty years of appli-
cation of stochastic dual dynamic programming in official and agent studies in brazil-main features

and improvements on the newave model. 2018 Power Systems Computation Conference (PSCC), 1-7
(IEEE).

Maceira MEP, Duarte V, Penna D, Moraes L, Melo A (2008) Ten years of application of stochastic dual
dynamic programming in official and agent studies in brazil-description of the newave program. 16th

PSCC, Glasgow, Scotland 14-18.

Ourani KI, Baslis CG, Bakirtzis AG (2012) A Stochastic Dual Dynamic Programming model for medium-
term hydrothermal scheduling in Greece. Universities Power Engineering Conference (UPEC), 2012
47th International, 1-6 (IEEE).

Parpas P, Ustun B, Webster M, Tran QK (2015) Importance sampling in stochastic programming: A Markov
chain Monte Carlo approach. INFORMS Journal on Computing 27(2):358-377.

Pereira M, Pinto L (1991) Multi-stage stochastic optimization applied to energy planning. Mathematical
Programming 52:359-375.

Philpott AB, de Matos V, Kapelevich L (2018) Distributionally Robust SDDP. Computational Management
Science 15(3-4):431-454.

Philpott AB, Guan Z (2008) On the convergence of sampling-based methods for multi-stage stochastic linear
programs. Operations Research Letters 36:450-455.

Powell WB (2011) Approzimate Dynamic Programming: Solving the Curses of Dimensionality. Wiley Series
in Probability and Statistics (Hoboken, N.J: Wiley), 2nd ed edition.

Powell WB (2016) A Unified Framework for Optimization under Uncertainty. Gupta A, Capponi A, Smith
JC, eds., Optimization Challenges in Complex, Networked and Risky Systems, 45-83, TutORials in
Operations Research (INFORMS).

PSR (2019) Software — PSR. http://www.psr-inc.com/softwares-en/, [Online; accessed 2019-12-18].
Quantego (2019) QUASAR. http://quantego.com/, [Online; accessed 2019-12-18].

Reus L, Pagnoncelli B, Armstrong M (2019) Better management of production incidents in mining using

multistage stochastic optimization. Resources Policy 63:101404.

Shapiro A (2011) Analysis of stochastic dual dynamic programming method. European Journal of Operational
Research 209(1):63-72.

Zou J; Ahmed S, Sun XA (2019) Stochastic dual dynamic integer programming. Mathematical Programming
175(1-2):461-502.

Appendix

In this appendix, we provide a feature comparison between SDDP. j1 and seven alternative libraries.

The comparison criteria are defined as follows:



14

Dowson and Kapelevich: SDDP. jl: a Julia package for stochastic dual dynamic programming
INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS

5.

. License: What is the legal license under which the code is distributed?

. Language: What is the main programming language in which the library is implemented?

1
2
3.
4

Solver agnostic: Can the library be used with multiple solvers?

. Subproblems: Can the subproblems be linear, quadratic, or arbitrary convex programs?

Policy Graph: What type of policy graph can the library solve? Options are linear, Markovian, and

general.

6.
7.

Cyclic: Does the library support cyclic policy graphs?

Noise: Does the library support stagewise-independent noise terms? If no, then |;| = 1. If “Any,” then

these terms can appear in the objective or in the constraints. If “RHS,” then the noise terms can only appear

in the right-hand side of the constraints.

8.
9.

Risk: Does the library support nested risk-measures? If “Custom,” these can be user-defined.

Parallel: Does the library use parallel computing in its solution algorithm?

10. SDDiP: Does the library implement the algorithm of Zou et al. (2019)7



Dowson and Kapelevich: SDDP. ji: a Julia package for stochastic dual dynamic programming
INFORMS Journal on Computing 00(0), pp. 000-000, © 0000 INFORMS

Name | SDDP.jl FAST msppy StochDynamicProgram.jl
License | MPL-2.0 GPLv3 BSD-3 MPL-2.0
Language Julia MATLAB Python Julia
Solver agnostic Yes Yes No Yes
Subproblems | Convex Linear Quadratic Linear
Policy Graph | General Markovian Markovian Linear
Cyclic Yes No Yes No
Noise Any No Any Any
Risk | Custom No Yes Custom
Parallel Yes No Yes No
SDDiP Yes No Yes No
Name | StOpt  StructDualDynProg.jl QUASAR PSR-SDDP
License | LGPLv3 MIT Commercial Commercial
Language Julia C++ Java Julia
Solver agnostic Yes Yes Yes No
Subproblems | Linear Convex Quadratic Quadratic
Policy Graph | Markovian General Markovian Markovian
Cyeclic No Yes' No No
Noise RHS No Any Any
Risk No No Yes Yes
Parallel Yes No Yes Yes
SDDiP No No No No

Table 1

no objective function, i.e., it is pure feasibility.

SDDP library comparison. t StructDualDynProg.jl can support cyclic policy graphs if the problem has



