
Partially observable multistage stochastic programming

Oscar Dowsona,∗, David P. Mortona, Bernardo K. Pagnoncellia,b

aDepartment of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, USA
bSchool of Business, Universidad Adolfo Ibáñez, Santiago, Chile

Abstract

We propose a class of partially observable multistage stochastic programs and describe an algorithm for solving this class of
problems. We provide a Bayesian update of a belief-state vector, extend the stochastic programming formulation to incorporate the
belief state, and characterize saddle-function properties of the corresponding cost-to-go function. Our algorithm is a derivative of
the stochastic dual dynamic programming method.

Keywords: Bayesian, multistage, partially observable, stochastic dual dynamic programming, stochastic programming

1. Introduction

Multistage stochastic programming is a framework for solv-
ing sequential decision problems under uncertainty. An algo-
rithm for solving those problems is known as stochastic dual
dynamic programming (SDDP) [1]. However, a critique of
stochastic programming, including models solved by SDDP, is
that the distribution of the uncertainty must be known a priori
[2]. This distribution—referred to as the nominal distribution—
is typically approximated from historical data and is an imper-
fect representation of the “true,” underlying distribution. Such
approximation can become a shortcoming when policies trained
using the nominal distribution perform poorly when evaluated
on the underlying distribution or, practically speaking, when
evaluated on out-of-sample test data.

To circumvent this shortcoming, various approaches have
been proposed in the literature. One approach is distribution-
ally robust multistage stochastic programming; e.g., [2, 3, 4, 5].
In the distributionally robust setting, the agent optimizes with
respect to the worst-case distribution over a set, often defined
according to some distance metric:

min
x∈X

max
P∈P

EP[V(x, ω)].

Here, x ∈ X captures feasible decisions that minimize the
expectation of V(x, ω) with respect to a worst-case distribu-
tion P that lies in the ambiguity set P. This formulation has
the nice property that in choosing the ambiguity set, the mod-
eler can impart domain knowledge about the likelihood of the
underlying distribution. However, one critique of the distri-
butionally robust approach in a multistage setting is that the
agent does not revise the ambiguity set in response to new in-
formation. Some authors introduce adaptability via decision-
dependent ambiguity sets in the two-stage case [6, 7], or pro-
vide multi-period uncertainty sets with here-and-now decisions

∗Corresponding author
Email address: oscar.dowson@northwestern.edu (Oscar Dowson)

[8]. However, we are unaware of analogous work exploring
decision-dependent ambiguity sets in the multistage setting.

This paper addresses adaptability via a different approach.
Instead of assuming a single nominal distribution, we assume
that the modeler can construct a finite number of candidate
distributions. Initially, the agent is unsure which of the candi-
date distributions is most similar to the underlying distribution.
However, as time progresses, the agent observes realizations of
the random vector from the underlying distribution and updates
a belief about which of the candidates most accurately reflects
the underlying distribution.

The adaptive approach just sketched has arisen in Markov
decision processes (MDPs), where they are known as contex-
tual MDPs (CMDPs) [9]. These have also been studied under
the names multi-model MDPs [10] and concurrent MDPs [11].
CMDPs arise in a variety of settings. For example, the candi-
date distributions are possible rock strata in an oil drilling prob-
lem [12]; different types of visitors in online advertising [9];
and different treatment responses in healthcare [10]. CMDPs
are a class of more general partially observable MDPs [13].

Our work is distinct from the MDP literature because we
can compute provably optimal policies for problems with con-
tinuous state and control variables over a finite horizon. In
contrast, to our knowledge, the relevant computational MDP
literature focuses on problems with discrete state and control
variables. The algorithm we describe is a form of value iter-
ation [14], and it can also be viewed as approximate dynamic
programming [15] or approximate linear programming [16] in
which we exploit the structure of the problem through linear
programming duality to find provably optimal basis functions.

Valladão et al. [17] discuss embedding a hidden Markov
model in a stochastic program using SDDP, wherein the hidden
Markov model corresponds to the nominal distribution switch-
ing between discrete states over time. However, because of the
non-convex cost-to-go function, they relax the problem and for-
mulate and solve the fully observable (convex) case. We also
point to recent work [18, 19] in which a hidden Markov model

Preprint submitted to Operations Research Letters May 14, 2023

is incorporated in the approximate and stochastic dual dynamic
programming algorithms. Our work differs in that we allow
more general structures for the hidden Markov model, and we
provide a proof of convergence.

To summarize, our contributions are: (i) introducing a gen-
eral modeling framework for partial observability in stochastic
programming; (ii) characterizing the saddle-function nature of
the cost-to-go function; and (iii) showing how that characteri-
zation permits solution of the partially observable problem with
continuous state and control variables by a saddle-cut variant of
SDDP, which converges almost surely to an optimal policy.

The rest of the paper is laid out as follows. Section 2 in-
troduces the policy graph as a way of modeling sequential deci-
sion problems, and Section 3 introduces the SDDP algorithm as
a solution technique. Section 4 extends the modeling power of
policy graphs to include partial observability and proves the key
saddle property of the cost-to-go function. Section 5 exploits
that property, presenting a saddle-cut version of the SDDP al-
gorithm as a solution technique for partially observable mul-
tistage stochastic programs. We conclude in Section 6 with a
numerical example to demonstrate the value of our approach.

2. Policy graphs

The policy graph framework of Dowson [20] models a mul-
tistage stochastic programming problem using a graph com-
posed of nodes and edges. In each node i, the goal of the agent
is to find a decision rule, πi(x, ω), that maps the incoming state
variable x and realization of a nodewise-independent noise ω
to a feasible control u. We denote the set of feasible controls
by Ui(x, ω), which depends on the state variable and noise real-
ization. The noise ω is governed by a distribution with sample
space Ωi, and the term nodewise-independent means that the
random variable ω is independent of x and of the realization of
ω at all other nodes. We use P(ω ∈ Ωi) to denote the probabil-
ity of realizing ω at node i. After the agent chooses control u,
the state variable transitions from the incoming state x, to the
outgoing state variable x′, according to a transition function,
x′ = Ti(x, u, ω). In addition, a cost of Ci(x, u, ω) is incurred.

Definition 1. In a hazard-decision node, the agent chooses a
control u, according to the decision rule πi(x, ω), after observ-
ing ω ∈ Ωi. The state transitions from x to x′ according to
Ti(x, u, ω). The decision rule respects the set of admissible con-
trols so that u ∈ Ui(x, ω), and cost Ci(x, u, ω) is incurred. A
schematic of this is shown in Figure 1.

u = πi(x, ω)
x′ = Ti(x, u, ω)

Ωi

Ci(x, u, ω)

x x′

ω

Figure 1: Schematic of a hazard-decision node.

Definition 2. A policy graph, G = (R,N ,E,Φ), is a tuple with
a root node R, a further set of nodes N , and directed edges, E,
connecting the nodes. An |N| + 1 by |N| matrix Φ specifies
transition probabilities between nodes, with entries φi j. Given
a node i, for each edge (i, j) ∈ E we transition to node j with
probability φi j>0, where i ∈ N ∪ {R}, j ∈ N , and

∑
j:(i, j)∈E φi j ≤

1. If no edge exists, then φi j = 0.

Definition 3. The children of node i are the elements in the set
i+ = { j : φi j > 0}, and i is a leaf node if i+ = ∅.

The sum in Definition 2 is at most one to account for dis-
count factors, cyclic policy graphs, and leaf nodes; see [20] for
details. In what follows, we specialize to acyclic policy graphs.

Definition 4. A multistage stochastic program seeks an optimal
policy π, which is a set of decision rules, πi(x, ω), for each node
i ∈ N , that minimizes the expected cost at the root node:

min
π∈Π

E
i∈R+; ω∈Ωi

[Vπ
i (xR, ω)], (1)

where Π is the set of feasible policies, xR is the initial state
vector, and:

Vπ
i (x, ω) =

{
Ci(x, u, ω) + E

j∈i+; ϕ∈Ω j

[
Vπ

j (x′, ϕ)
]

:
u = πi(x, ω)

x′ = Ti(x, u, ω)

}
.

The expectation operator, E[·], accounts for transition prob-
abilities φi j for nodes j ∈ i+, and the probability mass function
(pmf) governing the node-independent noise for each ϕ ∈ Ω j:

E
j∈i+; ϕ∈Ω j

[
Vπ

j (x′, ϕ)
]

=
∑
j∈i+

φi j

∑
ϕ∈Ω j

P(ϕ ∈ Ω j) · Vπ
j (x′, ϕ).

Definition 5. A hazard-decision cost-to-go function at node i ∈
N , is given by:

HDi : Vi(x, ω) =

min
u,x̄,x′

Ci(x̄, u, ω) + E
j∈i+; ϕ∈Ω j

[
V j(x′, ϕ)

]
s.t. x̄ = x

x′ = Ti(x̄, u, ω)
u ∈ Ui(x̄, ω).

(2)

We include the so-called fishing constraint, x̄ = x, to simplify
an upcoming calculation of a subgradient with respect to x, and
to simplify our upcoming assumption (A4).

Using Bellman’s principle of optimality [21], we have that
Vπ∗

i (x, ω) = Vi(x, ω) under an optimal policy π∗ to (1) formed
by choosing a control u in the arg min of (2):

π∗i (x, ω) ∈ arg min
u∈Ui(x,ω)

{
Ci(x, u, ω) + E

j∈i+; ϕ∈Ω j

[
V j (Ti(x, u, ω), ϕ)

]}
.

Note that we have substituted out the transition function and
fishing constraint for convenience.

A policy graph with N = {1, 2, . . . , |N|} and unit transi-
tion probabilities, φR,1 = φi,i+1 = 1, yields a standard multi-
stage stochastic program with inter-stage independence [20],
but other transition matrices Φ allow us to capture more gen-
eral models such as those discussed in [20]. It is possible to
replace E[·] with an operator, F[·], which represents a coherent
risk measure [22], but we consider expectations for simplicity.

2

3. Stochastic dual dynamic programming

To facilitate a computationally tractable problem, which can
be addressed by an SDDP-type algorithm, we make the follow-
ing assumptions for the remainder of the paper. Given a policy
graph G = (R,N ,E,Φ):

(A1) The number of nodes in N is finite.
(A2) Each i ∈ N is a hazard-decision node.
(A3) The sample space, Ωi, is finite at each node i ∈ N .
(A4) Given fixed x and ω, and excluding the expectation term,

problem (2) at each node i ∈ N can be formulated as a
linear program.

(A5) For each i ∈ N , problem (2) is feasible and has a finite
optimal solution for every incoming state x and ω ∈ Ωi.

(A6) The graph G is acyclic.

Assumptions (A1), (A3), (A4), and (A6) imply model (1) is
a multistage stochastic linear program of finite dimension. As-
sumption (A4) can be weakened to a convex program given ad-
ditional assumptions such as an appropriate constraint qualifi-
cation; see Girardeau et al. [23]. Assumption (A5) includes the
notion of relatively complete recourse and ensures that prob-
lem (2) has a finite optimal solution. As a result, model (1) has
a finite optimal solution.

The expected cost-to-go term in (2) is convex with respect
to x′. Thus, it can be approximated from below by the maxi-
mum of a set of affine functions known as cuts:

E
j∈i+; ϕ∈Ω j

[
V j(x′, ϕ)

]
≥ max

k=1,2,...,K

{
α(i)

k + β(i)>
k x′

}
.

SDDP [1, 20, 24, 25, 26] is an algorithm that iteratively
constructs the set of cuts for each node i. After K iterations the
approximated version of HDi, which includes a scalar decision
variable θ to linearize the cuts, is as follows:

HDK
i : VK

i (x, ω) = min
u,x̄,x′,θ

Ci(x̄, u, ω) + θ

s.t. x̄ = x [λ]
x′ = Ti(x̄, u, ω)
u ∈ Ui(x̄, ω)
θ ≥ α(i)

k + β(i)>
k x′, k = 1, . . . ,K

θ ≥ −M,

where M is sufficiently large. Each iteration of SDDP consists
of two phases: (i) a forward pass, which samples a sequence of
nodes and realizations of the node-independent noise terms, and
generates a sequence of state variables at which new cuts are
computed; and, (ii) a backward pass, which constructs a new
cut at each realization of the state variables from the forward
pass. Under mild sampling assumptions (notably, independence
of the forward passes), this algorithm has been shown to con-
verge to an optimal policy almost surely in a finite number of
iterations [24]. Pseudo-code for the Kth iteration of a typical
SDDP algorithm is given in Algorithm 1. The rand() function
in the while loop yields a uniform random variable in [0, 1] and
accounts for policy graphs that have discount factors. It also
accounts for the situation i+ = ∅, in which case the check is
false and the forward pass is terminated. We iterate through list

Algorithm 1: Kth iteration of the SDDP algorithm.

/* Forward pass */

set x = xR, S = [], i = R
while (rand() ∈ (0, 1]) > 1 −

∑
j∈i+φi j do

sample new i from i+ according to pmf, φi,·/
∑

j∈i+ φi j

sample ω from Ωi

solve HDK
i (x, ω) and obtain x′i

append (i, x′i) to the list S
set x = x′i

end
/* Backward pass */

for (i, x̄) in reverse(S) do
if i+ = ∅ then

/* Handles leaf nodes */

continue to next for-loop iterate
end
for j ∈ i+, ω ∈ Ω j do

solve HDK
j (x̄, ω)

set θ̄K
j,ω to the optimal objective value

set λ̄K
j,ω to an optimal dual vector λ

end
/* let E [·] denote E j∈i+;ω∈Ω j [·] */

set β(i)
K+1 = E

[
λ̄K

j,ω

]
set α(i)

K+1 = E
[
θ̄K

j,ω

]
− β>K+1 x̄

add the cut θ ≥ α(i)
K+1 + β(i)>

K+1x′ to HDK
i

end

S, from the last item to the first, via reverse(S). In addition
to assumptions (A1)–(A6), execution of the algorithm requires
that for each i ∈ N , the size of

∑
j∈i+ |Ω j| is modest so that the

main step in the backward pass can be carried out.

4. Policy graphs with imperfect node information

When formulating a multistage stochastic program as a pol-
icy graph, we assume that at each point in time the agent has
perfect information regarding the current node at which a de-
cision is to be made. In this section, we relax that modeling
assumption.

Given a policy graph G = (R,N ,E,Φ), we replace the as-
sumption of perfect node information by the assumption that
the agent can partition the set of nodes N into ambiguous sub-
sets. We denote the partition by A, where

⋃
A∈A A = N . By

ambiguous subsets, we mean that the agent can observe the cur-
rent ambiguity set, but is unsure of the current node within that
set. So, in the case of perfect information from Section 2, we
have A = {{i} : i ∈ N}, i.e., |A| = 1 for all A∈ A. Our gen-
eralization allows instead, e.g., for |A| = 2, where each A ∈ A
could correspond to a particular time stage; i.e., the agent can
observe the current stage, but not which node within the stage.

Definition 6. An ambiguity partitionA partitions the nodesN
into subsets of nodes that the agent cannot distinguish.

3

We extend a policy graph to G = (R,N ,E,Φ,A). We as-
sume that the agent can observe the cost function Ci, transition
function Ti, and set of feasible controls Ui when making a de-
cision at A 3 i. Here, Ci, Ti, and Ui must be identical for all
nodes in an ambiguity set because otherwise the agent could
distinguish the nodes. The set of children i+ and transition prob-
abilities may differ between nodes within an ambiguity set, and
the probability distribution governing realizations ω ∈ Ωi may
also differ. Often the support of ω will be identical within an
ambiguity set. That said, we allow Ωi , Ωi′ for i, i′ ∈ A, and
the agent can distinguish i from i′ if ω ∈ Ωi \Ωi′ is observed.

Under imperfect node information, the agent models the
probability of being in each node via a belief state.

Definition 7. At a fixed point in time, the belief state b is mod-
eled by an |N|+1 dimensional vector, where component bi is
the probability that the current node is i. The initial belief state
is the unit vector with probability 1 on the root node R.

Given that the agent can observe the current ambiguity set,
A∈ A, we have bi = 0 for i < A, and of course,

∑
i∈A bi = 1 and

b ≥ 0. Under perfect information, we have |A| = 1 for all A,
meaning b is the unit vector corresponding to the current node.

Upon entering ambiguity set A and observing ω, the agent
updates the belief state from b to b′ using Bayes’ theorem:

b′i =

[1i∈A · P(ω ∈ Ωi)] ·
∑

j∈NR

b j · φ ji∑
j∈NR

b j
∑
k∈A

φ jk · P(ω ∈ Ωk)
, (3)

where 1i∈A = 1 if i ∈ A and 0 otherwise, and NR ≡ N ∪ {R}.
The numerator of (3) has two components. The first is the prob-
ability of observing A and ω conditional on the agent being
in node i, and the second is the probability of transitioning to
node i given previous belief b. The denominator is the proba-
bility of observing A and ω given the previous belief b and acts
to normalize ||b′||1 = 1.

Equation (3) can be expressed in vector form as follows:

b′ = Bk(b, ω) =
Dω

Ak
Φ>b∑

i∈NR

bi
∑

j∈Ak

φi j · P(ω ∈ Ω j)
, (4)

where Dω
Ak

is an |N|×|N| diagonal matrix in which element (i, i)
is 1i∈Ak ·P(ω ∈ Ωi). We have added subscript k to (unobservable)
node k’s ambiguity set A to facilitate subsequent node-specific
calculations. In what follows we refer to (4) as the Bayesian up-
date. This update hinges on our assumptions regarding: Marko-
vian node-to-node transitions; the agent knowing the probabil-
ity distribution governing ω for each i ∈ N and the transition
probabilities Φ; and, the agent observing ω.

Analogous to model (1), we now define a partially observ-
able multistage stochastic program.

Definition 8. A partially observable multistage stochastic pro-
gram seeks an optimal policy π∈ Π that minimizes the expected
cost at the root node:

min
π∈Π
Vπ(xR, bR),

where xR is the initial state vector, bR is the initial belief vector
which places probability 1 on the root node R,

Vπ(x′, b) =
∑
j∈NR

b j

∑
k∈N

φ jk

∑
ϕ∈Ωk

P(ϕ ∈ Ωk) · Vπ
k (x′, Bk(b, ϕ), ϕ), (5)

and:

Vπ
i (x, b, ω) =

{
Ci(x, u, ω) +Vπ(x′, b) :

u = πi(x, b, ω)
x′ = Ti(x, u, ω)

}
.

Here, Vπ accounts for: (i) the probability the current node
is j, b j; (ii) the probability of transitioning from j to k, φ jk; (iii)
the probability of observing ϕ at k, P(ϕ ∈ Ωk); and (iv) the cost-
to-go at node k given the updated belief Bk(b, ϕ),
Vπ

k (x′, Bk(b, ϕ), ϕ). Note that the decision rule now includes
the belief state vector. Analogous to the fully observable case,
i.e., (2), we can represent an optimal policy, π∗, by selecting
π∗i (x, b, ω) as an element of the arg min of the following:

Belief-SP Vi(x, b, ω) = min
u,x̄,x′

Ci(x̄, u, ω) +V(x′, b)

s.t. x̄ = x
x′ = Ti(x̄, u, ω)
u ∈ Ui(x̄, ω),

(6)

with Vπ∗

i (x, b, ω) = Vi(x, b, ω).

Remark 1. If the agent is in ambiguity set A ∈ A, then b j = 0
for all nodes j < A. Thus, at all nodes i ∈ A,V can be replaced
in problem (6) by a functionVA:

VA(x′, b) =
∑
j∈A

b j

∑
k∈ j+

φ jk

∑
ϕ∈Ωk

P(ϕ ∈ Ωk) · Vk(x′, Bk(b, ϕ), ϕ).

We sometimes use the expression in equation (5), and other
times it is more convenient to use the view in Remark 1. We
now characterize properties of value function,V(x′, b).

Lemma 1. Assume (A1)-(A6), let i ∈ N and fix b and ω ∈ Ωi.
The function Vi(x, b, ω) is convex with respect to x.

Proof. The node set N is finite by (A1). Thus, by (A6) there
is a finite set of sample paths of nodes indexed, say, by S ∈ S,
rooted at node i that accounts for the sequence of nodes visited
until the sample path terminates in a leaf node. The probability
mass function governing S ∈ S is determined by the transition
matrix Φ. The distribution of ω at each j ∈ S has finite support
by (A3). Hence, under (A4) and (A5) we can express Vi(x, b, ω)
as the optimal value of a bounded and feasible linear program
of finite dimension. Since x appears only on the right-hand side
of the linear program, Vi(·, b, ω) is convex.

Lemma 2. Bi(b, ω) = B j(b, ω) for all j ∈ Ai.

Proof. The result is immediate because Ai = A j.

Lemma 3. Vi(x, b, ω) = V j(x, b, ω) for all j ∈ Ai.

4

Proof. The result is again immediate because all nodes j ∈ Ai

share the same cost functions C j, transition functions T j, and
feasibility sets U j.

Lemma 4. Assume (A1)-(A6). The functionV(x′, b) is concave
with respect to b for fixed x′.

Proof. Construct a topological ordering of the nodes,N , in the
acyclic policy graph, so that nodes have higher precedence in
the order than their children and so that all leaf nodes consti-
tute the lowest precedence values. Then, given a node i, fix x′

and ϕ ∈ Ωk, and assume that Vk(x′, b′, ϕ) is a piecewise-linear,
concave function of b′ for all nodes k in the topological order
subsequent to i. This assumption is trivially satisfied at leaf
nodes of the policy graph, at which there is no cost-to-go term.
We now show that for fixed x and ω ∈ Ωi that Vi(x, b, ω) is also
a piecewise-linear concave function of b where:

Vi(x, b, ω) = min
u,x̄,x′

{
Ci(x̄, u, ω) +∑

j∈NR

b j

∑
A∈A

∑
k∈A

φ jk

∑
ϕ∈Ωk

P(ϕ ∈ Ωk) · Vk(x′, Bk(b, ϕ), ϕ)
}
.

Note that we split the inner sum over k ∈ N from (5) into
an equivalent sum over the ambiguity partition and then nodes
within each element of the partition, and for simplicity we have
suppressed the constraints of (6) that govern u, x̄, x′.
Re-arranging terms, using Lemmas 2 and 3, and with a slight
abuse of notation so that Bk = BA and Vk = VA, we obtain:

Vi(x, b, ω) = min
u,x̄,x′

{
Ci(x̄, u, ω) +∑

A∈A

∑
ϕ∈ΩA

∑
j∈NR

b j

∑
k∈A

φ jk · P(ϕ ∈ Ωk) · VA(x′, BA(b, ϕ), ϕ)
}
,

where ΩA =
⋃

k∈A Ωk. Then, since the inner VA(x′, ·, ϕ) is a
piecewise-linear concave function, it can be represented by the
minimum of a collection of affine functions:

Vi(x, b, ω) = min
u,x̄,x′

{
Ci(x̄, u, ω) +∑

A∈A

∑
ϕ∈ΩA

∑
j∈NR

b j

∑
k∈A

φ jk · P(ϕ ∈ Ωk) · min
γ∈ΓA(x′,ϕ)

γ>BA(b, ϕ)
}
, (7)

for an appropriately defined ΓA(x′, ϕ). Here, e>BA(b, ϕ) = 1,
where e is the vector of all 1s, and so equation (7)’s piecewise-
linear concave construct for VA(x′, ·, ϕ) allows for an intercept
in each of the affine pieces. Substituting the expression for the
Bayesian update (4) yields:

Vi(x, b, ω) = min
u,x̄,x′

{
Ci(x̄, u, ω) +

∑
A∈A

∑
ϕ∈ΩA

∑
j∈NR

b j

∑
k∈A

φ jk · P(ϕ ∈ Ωk)

 ·
min

γ∈ΓA(x′,ϕ)
γ>

[
Dϕ

AΦ>b∑
j∈NR

b j
∑

k∈A φ jk · P(ϕ ∈ Ωk)

]}
,

which simplifies to:

Vi(x, b, ω) = min
u,x̄,x′

Ci(x̄, u, ω) +
∑
A∈A

∑
ϕ∈ΩA

min
γ∈ΓA(x′,ϕ)

γ>Dϕ
AΦ>b

 .
The right-hand side of this expression for Vi(x, b, ω) is the min-
imum (over u, x̄, x′) of a sum of piecewise-linear concave func-
tions of b. Thus, Vi(x, ·, ω) is a piecewise-linear concave func-
tion. Applying this argument inductively up the topological or-
der for all nodes i ∈ N , we find that V(x′, ·) is a piecewise-
linear concave function.

Theorem 1. Assume (A1)-(A6), let V be defined by (6),V(x′, b)
be defined by (5), and assume the belief state is updated accord-
ing to (4). Then, V(x′, b) is a saddle function, which is convex
in x′ for fixed b and concave in b for fixed x′.

Proof. If we fix b then by Lemma 1 and equation (5), V(·, b)
is a convex combination of convex functions, Vk(·, Bk(b, ϕ), ϕ).
Thus,V(x′, b) is convex with respect to x′. If we fix x′ then by
Lemma 4,V(x′, ·) is concave, yielding the desired result.

5. Solution method

Theorem 1 establishes that the cost-to-go function, V, is a
saddle function. Such saddle functions also arise in the work of
Downward et al. [27] and Baucke et al. [28]. In contrast to our
motivation to handle partial observability, their motivation, and
the analogous concave component of V, arises from modeling
stagewise-dependent uncertainty in the objective function [27]
and modeling a class of risk-averse optimization models [28].
While the form of our cost-to-go function differs due to the up-
date for belief states, we borrow ideas from [27] to develop a
variant of the SDDP algorithm that converges almost surely to
an optimal policy in a finite number of iterations.

We begin by forming a lower-approximation of saddle func-
tion V(x′, b) using an outer approximation for x′ and an inner
approximation for b. As in a standard SDDP algorithm, this
approximation is iteratively refined. Each iteration consists of
a forward pass, in which a sequence of nodes i, states x′, and
beliefs b are sampled, and a backward pass, in which the ap-
proximation is refined at the sampled points of the forward pass.
After K iterations, model (6) is approximated by the following
min-max subproblem:

Belief-SPK
i : V̄K

i (x, b, ω) =

min
u,x̄,x′,θ

max
γ

Ci(x̄, u, ω) +
K∑

k=1
γkθk

s.t. x̄ = x [λ]
x′ = Ti(x̄, u, ω)
u ∈ Ui(x̄, ω)
K∑

k=1
γkbk = b [µ]

K∑
k=1

γk = 1 [ν]

γk ≥ 0, k = 1, . . . ,K
θk ≥ α

(i)
k + β(i)>

k x′, k = 1, . . . ,K
θk ≥ −M, k = 1, . . . ,K.

(8)

5

The sequence of cut inequalities provides an outer approx-
imation with respect to x′ in the spirit of Benders’ decompo-
sition. The inner approximation with respect to b is achieved
by adding a sequence of columns involving bk with decision
variables, γk, in the spirit of Dantzig-Wolfe decomposition. A
visualization of the cost-to-go function is given in Figure 2.

x′b

V

Figure 2: Example of a saddle function. Thin (black) straight lines are cuts
w.r.t. x′. The γ variables handle interpolation of these functions to create the
thick (red) straight lines of the interpolated approximate value function.

Feasibility of the inner maximization in (8) can be ensured
by initializing with bk equal, in turn, to each unit vector. Sub-
problem (8) has bilinear terms between γk and θk. However,
because the Bayesian update does not depend on the state x
or the control u, we can convert (8) into a single minimization
model by taking the dual of the inner maximization problem:

Belief-SPK
i : V̄K

i (x, b, ω) =

min
u,x̄,x′,ν,µ

Ci(x̄, u, ω) + µ>b + ν

s.t. x̄ = x, [λ]
x′ = Ti(x̄, u, ω)
u ∈ Ui(x̄, ω)
µ>bk + ν ≥ α(i)

k + β(i)>
k x′, k = 1, . . . ,K

µ>bk + ν ≥ −M, k = 1, . . . ,K.

(9)

Given fixed values for x, b, and ω, subproblem (9) is now
tractable and can be solved as a linear program, or a convex
program given an appropriate variant of assumption (A4).

Returning to Remark 1, given that the agent is currently in
ambiguity set A, has belief b, and outgoing state variable x′, a
saddle cut that refines the approximation of VA(x′, b) can be
computed using Algorithm 2. Note that compared to standard
SDDP cut-computation algorithms, the only difference is that
instead of knowing with certainty that we wish to add a cut to
node i, we loop over all nodes in the current ambiguity set A and
weigh these values by the agent’s current belief. Pseudo-code
for the full algorithm is given in Algorithm 3.

Theorem 2. Assume (A1)-(A6), let V be defined by (6),V(x′, b)
be defined by (5), and assume the belief state is updated accord-
ing to (4). Let the sample paths of Algorithm 3 in the forward
pass be generated independently at each iteration K. Then, Al-
gorithm 3 converges to an optimal policy almost surely in a
finite number of iterations.

Proof. The set of piecewise linear functions defining each func-
tion, Vk(x′, Bk(b, ϕ), ϕ), is finite in both x′ and b. Given finite

Algorithm 2: Cut calculation.
Given K, A, x′K , bK

for i ∈ A, j ∈ i+, ω ∈ Ω j do
solve Belief-SPK

j (x′K , bK , ω) and obtain an extreme
point solution

set θ̄K
i, j,ω to the optimal objective value

set λ̄K
i, j,ω to an optimal dual vector λ

end
/* let E [·] denote

∑
i∈A(bK)i E j∈i+;ω∈Ω j [·] */

set β(i)>
K+1 = E

[
λ̄K

i, j,ω

]
set α(i)

K+1 = E
[
θ̄K

i, j,ω

]
− β(i)>

K+1x′K
obtain the saddle-cut µ>bK + ν ≥ α(i)

K+1 + β(i)>
K+1x′

Algorithm 3: Belief-state SDDP.
Given xR and bR

set K = 0
while true do

set x = xR, b = bR, S = [], i = R
while (rand() ∈ (0, 1]) > 1 −

∑
j∈i+φi j do

sample new i from i+ according to pmf,
φi,·/

∑
j∈i+ φi j

sample ω from Ωi

set A = Ai

set b′ = Bi(b, ω)
solve Belief-SPK

i (x, b′, ω) and obtain x′, an
extreme point solution

append (A, x′, b′) to the list S
set x = x′, b = b′

end
for (A, x̄′, b̄′) in reverse(S) do

obtain saddle-cut from Algorithm 2 given K, A,
x̄′, b̄′

add the saddle cut to nodes i ∈ A, where i+ , ∅
end
set K = K + 1

end

Ωk and N it follows from equation (5) that V(x′, b) is also a
piecewise-linear saddle function, characterized by a finite num-
ber of pieces in both x′ and b. Under Bayesian update (4) with
finite Ωk and an acyclic graph, there is a finite set of bk val-
ues that can be generated across all forward passes of the algo-
rithm. Convergence then follows via an argument, analogous
to that of [24, 27], which uses the following: (i) there are a fi-
nite number of cuts that can be generated and hence after some
iteration no more cuts are formed; (ii) if no new cuts are gener-
ated during a deterministic sequence of forward and backward
passes that enumerates all possible sample paths then the algo-
rithm has converged to an optimal policy; and, (iii) by the sec-
ond Borel-Cantelli lemma [29], under independently sampling
in the forward pass, we will almost surely sample the determin-
istic sequence of paths from (ii) after the last iteration in which
a new cut is added.

6

6. Inventory management example

This section explores our method through a simple inven-
tory management example, which has two stages in each cyclic
period. In the first stage, the agent can purchase widgets at a
price of $1/widget, and there is no uncertainty. In the second
stage, a demand of ω widgets is revealed and, if necessary, the
agent must purchase additional widgets to meet demand at a
cost of $2/widget. Unsold widgets at the end of the stage in-
cur a holding cost of $1/widget. The agent has two candidate
distributions for demand, which we index by i = A, B. The
distribution of demand for each model is given in Table 1.

Model A Model B
Demand ω 1 2 1 2
Probability 0.8 0.2 0.2 0.8

Table 1: Distribution of demand models A and B.

We assume that each demand model is equally likely. The
policy graph of this problem is given in Figure 3.

R

DB HB

DA HA i = A

i = B

Di Hi

1
2

1
2

1

1

ρ

ρ

Figure 3: Policy graph of the inventory management problem.

For demand model i = A, B, the first-stage node can be for-
mulated as:

Di : Di(x) = min
u,x′≥0

{
u + E

ω
[Hi(x′, ω)] | x′ = x + u

}
,

and the second-stage node as:

Hi : Hi(x, ω) = min
u,x′≥0

{
2u + x′ + ρDi(x′) | x′ = x + u − ω

}
,

where ρ is the probability the process continues (or equiva-
lently, a discount factor), u is the quantity of widgets purchased,
x is the number of widgets in inventory at the start of the stage,
and x′ is the number in inventory at the end of the stage.

To solve this problem, we implemented Algorithm 3 in the
SDDP.jl package [30]. Then, we trained four policies using
four different assumptions:

1. fully observable, where the agent knows the underlying
distribution after departing R;

2. partially observable, where the ambiguity partition
is {DA, DB}, {HA,HB};

3. risk-neutral average demand, where demand is equally
likely to be 1 or 2 units, and the agent is risk neutral; and,

4. risk-averse average demand, where demand is equally
likely to be 1 or 2 units, and the agent is risk-averse, us-
ing a risk measure with the risk set formed by the convex
hull of the candidate distributions listed in Table 1.

In each of the four cases, we assume ρ = 0.9. To satisfy
the acyclic assumption (A6), we “unroll” each cycle 50 times
to create an acyclic policy graph with 100 stages (50 two-stage
periods). After training each policy using the appropriate vari-
ant of the SDDP algorithm, we performed a Monte Carlo sim-
ulation of the policy over 50 two-stage periods with 2000 repli-
cations. In each case, the same 2000 realizations of demand
were used. Note that in the average demand case, we simulated
demand using the original probability distribution, not the uni-
form demand model used to train the policy. The distributions
of the discounted cumulative cost over the 50 periods are given
by boxplots in Figure 4.

Fully
observable

Partially
observable

Risk neutral
avg. demand

Risk averse
avg. demand

10

15

20

25

30

Si
m

ul
at

ed
co

st
($

)

Figure 4: Distribution of discounted cumulative costs over 50 periods. Divi-
sions in each boxplot are at 0, 25, 50, 75, and 100th empirical percentiles. The
expected cost of the four policies grows from left-to-right in the plot.

As expected, the fully observable policy performs best be-
cause it can make an optimal decision at each stage. In model A,
the policy buys widgets so that it has 1 unit in inventory at the
end of the first stage. In model B, the policy buys widgets so
that it has 2 units in inventory at the end of the first stage.

Compared with the fully observable policy, the partially
observable policy has a higher median cost ($18.9 compared
with $17.9), and a higher worst-case cost ($24.3 compared with
$21.1). However, because the partially observable policy is
able to learn over time which candidate distribution is the un-
derlying distribution, it has minimum and 25th percentile costs
that are identical to the fully observable policy.

Compared with the partially observable policy, the policy
from assuming risk-neutral average demand is more expen-
sive in the worst 50% of outcomes. This is consistent with the
fact that the first-stage buying decision is based on an incorrect
probability distribution of future demand. As a result, the pol-
icy always ends the first stage with 1 unit in inventory. This
strategy is optimal for model A. However, if the the underlying
distribution is model B, the agent is more likely to have to pur-
chase widgets on the spot-market at $2/widget. This results in
a higher maximum cost of $29.6.

To counter-act this risk, the risk-averse average demand
policy minimizes the worst-case outcome over an ambiguity
set. This reduces the maximum cost so that the worst-case
outcome is similar to the worst-case outcome using the fully
observable policy ($20.9 compared with $21.1). However, be-
cause the risk measure only considers the worst-case outcomes,
the cost of the best-case outcomes is significantly increased
($19.9 compared with $10.1).

This example shows the benefit that solving the partially

7

observable model can bring. By enabling the policy to adapt to
distributional information as it is revealed, the partially observ-
able policy can perform similarly to the fully observable policy,
and better than either of the static average demand policies.

An example of the policy adapting to new information is
given in Figure 5. When the agent’s belief in model B exceeds
0.5, the first-stage buying decision ensures that 2 units of inven-
tory enter the second stage. When the agent’s belief is instead
at most 0.5, the first-stage decision ensures only 1 unit of inven-
tory enters the second stage.

5 10

0.5

1

Cyclic periods

B
el

ie
fi

n
m

od
el

B

(a) Belief

5 10

0.5

1

1.5

2

Cyclic periods

U
ni

ts

(b) First-stage buy

5 10

0.5

1

1.5

2

Cyclic periods

U
ni

ts

(c) Inventory

Figure 5: One sample path of the partially observable policy.

This section’s example is simple for explanatory purposes.
Real-world applications include hydro-thermal scheduling
problems in which the sequence of inflows is modeled by a
hidden Markov model with “wet” and “dry” hidden climate
states and mixing between the hidden states over time. There
are also applications in finance, in which the three distributions
are “bear,” “bull,” and “neutral” market states, and the observed
noise is the market return. See [17, 18, 19] for examples.

Supplementary material

We provide an implementation of Algorithm 3 in SDDP.jl

[30], an open-source library for solving multistage stochastic
programming problems using JuMP [31] and Julia [32]. See
https://github.com/odow.SDDP.jl.

Acknowledgements

This article was developed, in part, based upon funding
from the Alliance for Sustainable Energy, LLC, Managing and
Operating Contractor for the National Renewable Energy Lab-
oratory for the U.S. Department of Energy. The authors thank
three referees whose comments improved the paper.

References

[1] M. Pereira, L. Pinto, Multi-Stage Stochastic Optimization Applied to En-
ergy Planning, Mathematical Programming 52 (1991) 359–375.

[2] H. Rahimian, S. Mehrotra, Distributionally Robust Optimiza-
tion: A Review, Optmization Online Http://www.optimization-
online.org/DB FILE/2019/08/7332.pdf.

[3] B. Analui, G. C. Pflug, On Distributionally Robust Multiperiod Stochastic
Optimization, Computational Management Science 11 (3) (2014) 197–
220.

[4] A. B. Philpott, V. de Matos, L. Kapelevich, Distributionally Robust
SDDP, Computational Management Science 15 (3-4) (2018) 431–454.

[5] D. Bertsimas, S. Shtern, B. Sturt, A Data-Driven Approach
for Multi-Stage Linear Optimization, Optimization Online
Http://www.optimization-online.org/DB FILE/2018/11/6907.pdf.

[6] F. Luo, S. Mehrotra, Distributionally Robust Optimization with Decision
Dependent Ambiguity Sets, arXiv:1806.09215 [math] .

[7] N. Noyan, G. Rudolf, M. Lejeune, Distributionally Robust Optimiza-
tion with Decision-Dependent Ambiguity Set, Optimization Online
Http://www.optimization-online.org/DB HTML/2018/09/6821.html.

[8] O. Nohadani, K. Sharma, Optimization under Connected Uncertainty,
Working Paper, IEMS Department, Northwestern University .

[9] A. Hallak, D. Di Castro, S. Mannor, Contextual Markov Decision Pro-
cesses, arXiv:1502.02259 .

[10] L. N. Steimle, D. L. Kaufman, B. T. Denton, Multi-Model Markov
Decision Processes, Optimization Online Http://www.optimization-
online.org/DB FILE/2018/01/6434.pdf.

[11] P. Buchholz, D. Scheftelowitsch, Computation of Weighted Sums of Re-
wards for Concurrent MDPs, Mathematical Methods of Operations Re-
search 89 (1) (2019) 1–42.

[12] R. R. Torrado, J. Rios, G. Tesauro, Optimal Sequential Drilling for Hydro-
carbon Field Development Planning, in: Proceedings of the 29th AAAI
Conference on Innovative Applications, San Francisco, 4734–4739, 2017.

[13] L. P. Kaelbling, M. L. Littmany, A. R. Cassandra, Planning and Acting
in Partially Observable Stochastic Domains, Artificial Intelligence 101
(1998) 99–134.

[14] R. Howard, Dynamic Programming and Markov Processes, MIT Press,
Cambridge, MA., 1960.

[15] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality, Wiley Series in Probability and Statistics, Wiley,
Hoboken, N.J, 2nd ed edn., 2011.

[16] D. de Farias, B. van Roy, The Linear Programming Approach to Approx-
imate Dynamic Programming, Operations Research 51 (6) (2003) 850–
865.

[17] D. Valladão, T. Silva, M. Poggi, Time-Consistent Risk-Constrained
Dynamic Portfolio Optimization with Transactional Costs and Time-
Dependent Returns, Annals of Operations Research 282 (1-2) (2019)
379–405.

[18] J. Durante, J. Nascimento, W. Powell, Backward Approximate Dynamic
Programming with Hidden Semi-Markov Stochastic Models in Energy
Storage Optimization, arXiv:1710.03914 [math] .

[19] J. Durante, J. Nascimento, W. Powell, Risk Directed Importance Sam-
pling in Stochastic Dual Dynamic Programming with Hidden Markov
Models for Grid Level Energy Storage, arXiv:2001.06026 [math] .

[20] O. Dowson, The policy graph decomposition of multistage stochastic pro-
gramming problems, Networks 76 (2020) 3–23.

[21] R. Bellman, Dynamic Programming, Princeton University Press, Prince-
ton, 1957.

[22] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Coherent Measures of Risk,
Mathematical Finance 9 (3) (1999) 203–228.

[23] P. Girardeau, V. Leclère, A. B. Philpott, On the Convergence of Decompo-
sition Methods for Multistage Stochastic Convex Programs, Mathematics
of Operations Research 40 (1) (2015) 130–145.

[24] A. B. Philpott, Z. Guan, On the Convergence of Sampling-Based Methods
for Multi-Stage Stochastic Linear Programs, Operations Research Letters
36 (2008) 450–455.

[25] A. Shapiro, Analysis of Stochastic Dual Dynamic Programming Method,
European Journal of Operational Research 209 (1) (2011) 63–72.

[26] V. Guigues, Convergence Analysis of Sampling-Based Decomposition
Methods for Risk-Averse Multistage Stochastic Convex Programs, SIAM
Journal on Optimization 26 (4) (2016) 2468–2494.

[27] A. Downward, O. Dowson, R. Baucke, Stochastic dual dynamic pro-
gramming with stagewise-dependent objective uncertainty, Operations
Research Letters 48 (2020) 33–39.

[28] R. Baucke, A. Downward, G. Zakeri, A Deterministic Al-
gorithm for Solving Multistage Stochastic Minimax Dynamic
Programmes, Optimization Online Http://www.optimization-
online.org/DB FILE/2018/02/6449.pdf.

[29] G. Grimmett, D. Stirzaker, Probability and Random Processes, Oxford
University Press, Oxford, second edn., 1992.

[30] O. Dowson, L. Kapelevich, SDDP.Jl: A Julia Package for Stochastic Dual
Dynamic Programming, INFORMS Journal on Computing In press.

[31] I. Dunning, J. Huchette, M. Lubin, JuMP: A Modeling Language for
Mathematical Optimization, SIAM Review 59 (2) (2017) 295–320.

[32] J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A Fresh Ap-
proach to Numerical Computing, SIAM Review 59 (1) (2017) 65–98.

8

