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We propose the policy graph as a structured way of formu-
lating a general class of multistage stochastic programming
problems in away that leads to a natural decomposition. We
also propose an extension to the stochastic dual dynamic
programming algorithm to solve a subset of problems formu-
lated as a policy graph. This subset includes discrete-time,
convex, infinite-horizon, multistage stochastic programming
problems with continuous state and control variables. To
demonstrate the utility of our algorithm, we solve an exist-
ing multistage stochastic programming problem from the
literature based on pastoral dairy farming. We show that
the finite-horizonmodel in the literature suffers from end-
of-horizon effects, whichwe are able to overcomewith an
infinite-horizonmodel.
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1 | INTRODUCTION
This paper discusses the formulation of, and computation for, a class of multistage stochastic programming problems.
Our first contribution is a structured framework for the practitioner to formulatemultistage stochastic programming
problems. We call this the policy graph framework. The nodes in a policy graph provide a natural means for decomposing
themultistage stochastic program into a collectionof subproblems,with arcs linking these subproblems representing the
flowof information through time. The policy graph framework provides notational constructs that allow the practitioner
to cleanly formulate and communicate amuch broader class of multistage stochastic programming problems, relative to
existing techniques.

Our second main contribution is an extension of the stochastic dual dynamic programming (SDDP) algorithm
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(Pereira and Pinto, 1991) to solve a subset of models that can be formulated as a policy graph. This subset includes
discrete-time, convex, infinite-horizon stochastic linear programming problems. While the correspondingmultistage
stochastic programs can have infinitely many scenarios, we assume that the policy graph has amodest number of nodes,
which facilitates computation.

Unlike the standardization that has taken place in deterministic optimization (where terms like decision variable,
constraint, and objective function are widely accepted), the stochastic optimization community has fragmented into
different groups, each of which speaks a different arcane language (Powell, 2014). Therefore, in order to introduce the
policy graph and explain our solution technique, it is necessary to clearly define the terminology and notation that we
shall be using in this paper. Readers should be aware that comparedwith other approaches in the literature, there are
some subtle (and some large) differences in our approach. We use the language of stochastic optimal control (Bertsekas,
2005), with terms like stage, state, and control. We do not view the world as a scenario tree. Nor do we explicitly express
the uncertainty in terms of a filtration on some probability space. Instead, we follow an approach that is heavily inspired
by the approximate dynamic programming framework of Powell (2011) and theMarkov decision processes of Puterman
(1994): we decompose the problem into small atomic pieces, clearly define each piece, and then define how the pieces
fit together.

The paper is laid out as follows. In Section 2, we begin with some necessary terminology. Then, in Section 3, we
introduce the policy graph as away of formulatingmultistage stochastic programming problems. In Section 4, we present
an algorithm to solve a subset of problems formulated as a policy graph. Finally, in Section 5we demonstrate the utility
of considering the infinite-horizon formulation of a problem arising from pastoral agriculture.

2 | TERMINOLOGY
2.1 | Basic definitions
First, let us define the stage in multistage.

Definition A stage is a discretemoment in time in which the agent chooses a decision and any uncertainty is revealed.

Therefore,multistage refers to aproblemthat canbedecomposed into a sequenceof stages. This requires theassumption
that time can be discretised. Second, the stochastic component of multistage stochastic programming refers to problems
with uncertainty. In this paper, we differentiate between two types of uncertainty; the first of whichwe term a noise.
(We shall describe the second type in the next section, but it relates to how the problem transitions between stages.)

Definition A noise is a stagewise-independent random variable in stage t .

In stage t , we denote a single observation of the noise with the lowercase ωt , and the sample space from which it is
drawn by the uppercaseΩt . Ωt can be continuous or discrete, although in this paper we only consider the discrete case.
Furthermore, we use the term stagewise-independent to refer to the fact that the distribution of the noise in stage t is
independent of the noise in other time periods. 1, 2, . . . , t − 1, t + 1, t + 2, . . . .

Next we define a state, modifying slightly the definition from Powell (2016).

Definition A state is a function of history that captures all the information we need tomodel a system from some point
in time onward.
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Expressed a different way, a state is the smallest piece of information that is necessary to pass between stage t and t + 1
so that the optimal decision-making in stage t + 1 onward can be made independently from the decisions that were
made in stages 1 to t . Each dimension of the state is represented by a state variable. State variables can be continuous or
discrete.

We denote the state variable at the start of stage t by the lowercase xt . We refer to xt as the incoming state
variable. Then, during the stage: the agent chooses a control (action); a realization of the noise is observed; and the state
transitions to x ′t at the end of the stage according to the transition function. We refer to x ′t as the outgoing state variable.
We now define a control and the transition function.

Definition A control variable is an action or decision taken (explicitly or implicitly) by the agent during a stage.

Control variables in stage t can be continuous or discrete. In this paper, we denote control variables with the lowercase
ut . Such controls must be feasible for the agent to implement, and therefore they belong to a set that depends on the
incoming state variable and observation of the random noise; this is denoted ut ∈ Ut (xt ,ωt ).

Definition The transition function is a mapping of the incoming state xt to the outgoing state x ′t , given the control ut and
the noiseωt .

We denote the transition function as x ′t = Tt (xt ,ut ,ωt ). This function can be of any form. As a result of the state
transitioning, a cost is incurred.

Definition The stage-objective is the cost (if minimizing, otherwise value) accrued in stage t as a consequence of taking
the control ut , given the incoming state xt and realization of the noiseωt .

This is denotedCt (xt ,ut ,ωt ). All that remains is to define how the agent chooses a control. We use the terminology of
Puterman (1994) and call this a decision-rule.
Definition A decision-rule πt , for stage t , is a mapping of the incoming state variable xt and observation of the noiseωt
to a control ut .

This is denoted ut = πt (xt ,ωt ). In cases where the decision-rule does not depend upon the noise, we denote the
decision-rule as πt (xt ). We refer to a set of decision-rules, one for each stage t , as a policy.

Definition A policy is a set of decision-rules π = {πt : t = 1, 2, . . . ,T }, containing one element for each stage t .

2.2 | Nodes
Now that we have defined some basic terminology, we can construct the atomic building block of multistage stochastic
programming, which we refer to as a node.

Definition A node is a collection of the following components: incoming and outgoing state variables, a noise, some
control variables, a transition function, a stage-objective, and a decision-rule.

We discriminate between two types of node: Hazard-Decision andDecision-Hazard.
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ut = πt (xt ,ωt )
x ′t = Tt (xt ,ut ,ωt )

Ωt

Ct (xt ,ut ,ωt )

xt x ′t

ωt

F IGURE 1 Schematic of a Hazard-Decision node.

Definition In a Hazard-Decision node, the agent chooses a control ut after observing a realization of the noise ωt ∈
Ωt according to the decision-rule πt (xt ,ωt ). The state transitions from xt to x ′t according to the transition function
Tt (xt ,ut ,ωt ). The decision-rule respects the set of admissible controls so that ut ∈ Ut (xt ,ωt ). In addition, a cost
Ct (xt ,ut ,ωt ) is incurred. A schematic of this is shown in Figure 1.

Definition In aDecision-Hazard node, the agent chooses a control ut before observing a realization of the noiseωt ∈ Ωt
according to the decision-rule πt (xt ). The state transitions from xt to x ′t according to the transition functionTt (xt ,ut ,ωt ).
The decision-rule respects the set of admissible controls so that ut ∈ Ut (xt ). In addition, a costCt (xt ,ut ,ωt ) is incurred.
A schematic of this is shown in Figure 2.

ut = πt (xt )
x ′t = Tt (xt ,ut ,ωt )

Ωt

Ct (xt ,ut ,ωt )

xt x ′t

ωt

F IGURE 2 Schematic of a Decision-Hazard node.

Readers should note that the set of admissible controlsUt (xt )must be such that ut is feasible for every possible
realization of ωt . Therefore,Ut (xt ) can be thought of as the intersection of the feasible set for each realization of ω,
i.e.,Ut (xt ) = ∩ωt ∈ΩtUt (xt ,ωt ).

When no uncertainty is realized in the node (i.e., |Ωt | = 1), the Decision-Hazard node becomes identical to the
Hazard-Decision node. We denote this deterministic node by dropping the wavy line coming into the box depicting the
node and dropping theωt function arguments. Furthermore, readers should note that the two types of nodes are not
immutable. Instead, they are amodelling choice. For example, it is possible to transform aDecision-Hazard node into a
deterministic node followed by a Hazard-Decision node with an expanded state-space (see, e.g., Street et al. (2018)). An
example of this is shown in Figure 3.

In the left-hand node of Figure 3, we seek a decision rule ut = πt (xt ), which is identical to the decision rule of the
Decision-Hazard node. There is no need for a transition function; instead, we just pass through xt unchanged. Since
the control ut is needed in the next node, it also gets passed along as a temporary state variable. In addition, no costs
are incurred. In the second node, the uncertainty is realized. After the uncertainty is realized, the state transitions
from xt to x ′t according to the same transition function as the Decision-Hazard node. There is no need to compute a
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ut = πt (xt )
x ′t = Tt (xt ,ut ,ωt )

Ωt ωt

Ct (xt ,ut ,ωt )

xt xt , ut x ′t

F IGURE 3 ADecision-Hazard node expanded into a deterministic node and a Hazard-Decision node.

decision rule because the control ut has already been chosen. Finally, a cost ofCt (xt ,ut ,ωt ) is incurred, whereCt is the
stage-objective of the original Decision-Hazard node.

Despite the fact that this example demonstrates that the concept of a Decision-Hazard node is superfluous, we
retain the distinction betweenDecision-Hazard andHazard-Decision because it is a useful modelling device. However,
as shown in Street et al. (2018), the Decision-Hazard formulation is typically much more difficult to solve than the
Hazard-Decision formulation, and so the first step in any solution process is to convert the problem into a Hazard-
Decision formulation.

2.3 | Example
At this point, it is useful to consider a small example in order to contextualize the terminology we have been discussing.
As our example, we choose a small portfolio optimization problemwith two investment classes to choose from: stocks
and bonds.

In our example, there are three stages, which we denote t = 1, 2, 3. Since the value of stocks and bonds we own in
stage t depends on the value we owned in stage t − 1, these are state variables. We denote the value of stocks owned at
the start of stage t by x st , and the value of bonds by xbt . For control variables, in each stage t we can buy or sell stocks,
denoted ust , and bonds, denoted ubt . In stage t , the noise is themarket return, which we denoteωst for stocks andωbt for
bonds. Themarket returns are distributed as follows:

Ωt =


(ωst ,ωbt ) = (1.1, 1.05) w .p . 0.75

(ωst ,ωbt ) = (0.9, 0.95) w .p . 0.25

In the Hazard-Decision setting, the agent re-balances their portfolio after observing themarket returnωt . In other
words, the agent re-balances their portfolio immediately prior to market close at the end of each day. To do so, they
need a decision rule ut = πt (xt ,ωt ). Thus, for the feasibility setUt (xt ,ωt ), we have constraints that the value of stocks
and bonds ownedmust be non-negative, andwe need an “conservation of value” constraint, so:

Ut (xt ,ωt ) =

ut ∈ Ò
2 :

ust + u
b
t = 0

ωst x
s
t + u

s
t ≥ 0

ωbt x
b
t + u

b
t ≥ 0

 .

The transition functionT is trivial: the value of stocks (resp. bonds) at the start of stage t + 1 is equal to the value of
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stocks (resp. bonds) at the start of stage t multiplied by themarket return plus the purchase (or sale) ust (resp. ubt ). Thus,
we have: [

x st
′

xbt
′

]
= Tt (xt ,ut ,ωt ) =

[
ωst x

s
t + u

s
t

ωbt x
b
t + u

b
t

]
.

In the first two stages, the stage-objective is 0 (i.e., we assume that there are no transaction costs). In the final stage
t = 3, the stage-objective is:

C3(x3,u3,ω3) = ωs3 · x
s
3 + ω

b
3 · x

b
3 .

In the Decision-Hazard setting, the agent re-balances their portfolio before observing themarket return. In other
words, the agent re-balances their portfolio immediately after themarket open at the start of each day. To do so, they
need a decision rule ut = πt (xt ). The corresponding feasibility setUt is as follows:

Ut (xt ) =

ut ∈ Ò
2 :

ust + u
b
t = 0

x st + u
s
t ≥ 0

xbt + u
b
t ≥ 0

 .
We also have to account for the change in the order of the decisionmaking, so the transition function is:[

x st
′

xbt
′

]
= Tt (xt ,ut ,ωt ) =

[
ωst (x st + ust )
ωbt (xbt + ubt )

]
.

Finally, in the final stage t = 3, the stage-objective is:

C3(x3,u3,ω3) = ωs3 · (x
s
3 + u

s
3) + ω

b
3 · (x

b
3 + u

b
3 ).

3 | POLICY GRAPHS

The definitions in the previous section should be familiar tomost readers versed in stochastic programming. However,
notably excluded is a description of how the nodes are linked together. Typically, nodes are linked together as a linear
sequence so that x ′t = xt+1. If so, we use the terms node and stage interchangeably, andwe use xt and xt+1 instead of
xt and x ′t . Implicit within the sequential linking of nodes is the idea that ut cannot depend upon events in stages t + 1
onward (i.e., nonanticipativity), since the decision-rule πt depends only upon the incoming state variable xt and the
stagewise independent random variableωt .

In contrast to the linear case, it is possible to link nodes together inmore complicated structures. In these structures,
there can be many nodes corresponding to each stage (in time). Therefore, we cannot use the terms node and stage
interchangeably. To clearly signal thedifference,wewill use the subscript i insteadof t when referring to the components
within each node. Moreover, for each of the previous definitions, the reader should replace all references to “stage t ”
with “node i .” Additionally, whenever we say “stagewise-independent,” we really mean “nodewise-independent.” More
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concretely, wemean the noise in node i ,ωi , is independent of the noise at all other nodes. However, we shall retain the
terminology of “stagewise” independence since it is a term commonly used in the literature.

In the linear case, the sequence of decision making flows from stage t to stage t + 1. In more complicated graph
structures, we generalize this sequence into aMarkov process between nodes in the graph. This is the second type of
uncertainty that alluded to in the previous section. (Recall the first type of uncertainty was the stagewise-independent
noisewithin a node.) We denote thematrix of transition probabilities byΦ, with elementsφi ,j denoting the probability
of transitioning from node i to node j . In the linear case described above, theMarkov process is trivial: the probability
of transitioning from stage t to stage t + 1,φt ,t+1 , is 1, and the probability of transitioning from stage t to any other stage
t ′ is 0.

We now have almost all the terminology necessary to define a policy graph. Before we do, we need to define the
initial conditions of the problem.
Definition The root node is the current point-of-view of the agent in the decision-making process and stores an initial
value xR for the state variable.
It is important to note that the root node is neither aHazard-Decision nor aDecision-Hazard node; it is just a convenient
object to represent the initial point in the sequential decision-making process.

Definition A policy graph G = (R ,N, E,Φ) is defined by a tuple containing the root node R , along with the set of nodes
N and directed edges E. Φ is an |N | + 1 by |N |matrix of the transition probabilities between nodes, with entriesφi ,j ,
such that if there exists an edge (i , j ) in E for two nodes i ∈ N ∪ {R } and j ∈ N, then xj = x ′i with probabilityφi ,j > 0. If
no edge exists, thenφi ,j = 0.

It is also useful to define the children of a node and the notion of two nodes being connected.
Definition The children of node i are the nodes in the set i+ = {j : φi ,j > 0}.

Definition Node i is connected to node j if j ∈ i+.

Definition Node i is a leaf node if i+ = ∅.

Returning to our example from Section 2.3, the policy graph can be defined as follows:

G = (R ,N, E,Φ) = (t0, {t1, t2, t3 }, {(t0, t1), (t1, t2), (t2, t3)}, {φt0,t1 = 1,φt1,t2 = 1,φt2,t3 = 1}),

where the nodes t1, t2, and t3 are defined as outlined in Section 2.3. Writing out the explicit formulation of the policy
graph is tedious, especially if there are a large number of nodes. Instead, it is much easier to convey the structure of a
policy graph using a graphical representation. Figure 4 shows a hazard-decision formulation of the portfolio problem,
and Figure 5 shows a decision-hazard formulation. Each figure has a single circle that represents the root node. The
square boxes represent Hazard-Decision or Decision-Hazard nodes. For simplicity, we drop the annotations used in
Figures 1 and 2, since the node type can be inferred based on the presence (or absence) of a wavy arc representing the
noise.

We call policy graphs with a structure like Figures 4 and 5 linear policy graphs.
Definition A linear policy graph is composed of a finite set of nodes, where each node is connected to, at most, one other
node.
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t0 t1 t2 t3

F IGURE 4 Portfolio allocation problem: Hazard-Decision formulation.

t0 t1 t2 t3

F IGURE 5 Portfolio allocation problem: Decision-Hazard formulation.

When the policy graph is linear, we can use the terms node and stage interchangeably, and we denote the outgoing state
variable in stage t as xt+1 instead of x ′t .

We note that this paper is not the first to advocate for a graphical representation of the decision-making process.
The SystemDynamics community havedeveloped a rich graphical framework for conveying dynamical systems (Sterman,
2000). However, the SystemDynamics approach focuses on the (causal) relationships between the states (stocks) and
controls (flows) and cannot express how uncertainty is revealed through the decision-making process. There are also
well-known tools in theOperations Research community that use similar symbols such as decision trees, scenario trees,
and flowcharts (see Powell (2011) for examples). Our approach is different in that it operates at a level of abstraction
above the SystemDynamics framework (for example, each node can be diagrammed using SystemDynamics), and that
(as we shall show) it supersedes the scenario tree approach.

To show that policy graphs can also describe scenario trees, consider the following policy graph (also shown in
Figure 6):

G = (R ,N, E,Φ) =
(
R , {B ,C }, {(R ,B), (B ,C )}, {φR ,B = 1,φB ,C = 1}

)
.

R B C

F IGURE 6 Two-stage Hazard-Decision problem.

If each Hazard-Decision node in Figure 6 has two possible realizations ω1 and ω2, with probabilities p1 and p2
respectively, then it can be expanded into the scenario tree with six nodes. This can be described by the policy graph:

G = (R ,N, E,Φ) = (
R ,

{B1,B2,C11,C12,C21,C22 },
{(R ,B1), (R ,B2), (B1,C11), (B1,C12), (B2,C21), (B2,C22)},
{φR ,B1 = p1,φR ,B2 = p2,φB1,C11=p1,φB1,C12=p2,φB2,C21=p1,φB2,C22=p2 }

).

The graphical representation is shown in Figure 7. Note that every node is now deterministic (there are nowavy lines
in the graph). This is because we have moved the uncertainty from the stagewise-independent noise terms ω to the
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node-transitionmatrixΦ.

R
B2

B1

C21

C22

C12

C11

F IGURE 7 A policy graph that is equivalent to a scenario tree.

Formulating amultistage stochastic programmingmodel as a scenario tree offers significant generality (e.g., we
are no longer constrained to stagewise-independent noise), but may come at the cost of decreased computational
tractability (there aremore nodes, and thereforemore decision-rules to compute).

The benefit of the graphical representation of a policy graph is most apparent when different types of nodes are
mixed together. For example, a common problem in the literature is the two-stage problemwith recourse (Figure 8). In
this problem, the first stage is deterministic, and the second stage is Hazard-Decision. Alternatively, it is possible to
formulate the problem as shown in Figure 9: the first stage is Decision-Hazard, and the second stage is deterministic.

F IGURE 8 Two-stage problemwith recourse: hazard-decision.

F IGURE 9 Two-stage problemwith recourse: decision-hazard.

3.1 | Stagewise-dependent processes
So far, we have limited the uncertainty to two types: (i) a stagewise-independent noisewithin a node; and (ii) Markovian
transitions between nodes. Importantly, the transition between the nodes determines the sample space fromwhich
the stagewise-independent noise is sampled. We now show how these two types of uncertainty can be combined to
produce stagewise-dependent noise (just like stagewise-independent noise, we really mean nodewise-dependent noise).
(This is not the only way tomodel stagewise-dependent noise terms. Another way is through a state-space expansion,
see, e.g., Guigues (2014).) As amotivating example, consider amultistage stochastic programmingmodel set in New
Zealandwith rainfall as a random variable (e.g., Dowson et al. (2019)). The NewZealand summer climate is dominated
by the El Niño-Southern Oscillation, an irregular, periodical climate pattern in the Pacific Ocean. It has two extremes: El
Niño and La Niña. In El Niño years, the Eastern Pacific warms relative to average, and there is less rainfall than average
in NewZealand. In La Niña years, the opposite is true (NIWA, 2018). In addition, assume that the sequence of El Niño
and La Niña years can bemodelled by aMarkov process.

We could model this problem by a linear policy graph like Figure 8. However, we would need to add a binary
state variable to codewhether the systemwas in El Niño or La Niña, encode theMarkovian process into the transition
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functionT , and importantly, model the rainfall using only a stagewise-independent noise. Also note that for each stage,
there would be one decision-rule.

Alternatively, we canmodel the problem as shown in Figure 10without the need for the additional binary state
variable. In addition, the distribution of the noise (rainfall) can differ between nodes, and there is no restriction on the
relationship between the distribution of rainfall in El Niño years and the distribution of rainfall in La Niña years. Note
that this formulation comprises of two decision-rules for each stage: one to use if the year is El Niño and one to use if
the year is La Niña.

El Niño

La Niña
F IGURE 10 AMarkovian policy graph.

Importantly, the realization of the random node transition (into either El Niño or La Niña) is exogenous to the
remainder of the problem. Such a decomposition is hardly novel – indeed it is identical to the process of decomposing
the problem into stages (and thereby solving for a decision-rule in each stage, instead of a single decision-rule that
includes time as a state variable). We call policy graphswith this structure, where all the nodes in a stage t are connected
to all the nodes in the next stage t + 1,Markovian policy graphs, and we refer to the different nodes within a stage as the
Markov states of the stage.

Definition AMarkovian policy graph is composed of a finite set of stages, where each stage consists of a set of nodes,
and all the nodes within a stage are connected to nodes within, at most, one other stage.

The scenario tree in Figure 7 is also aMarkovian policy graph. However, there are some structureswhich are neither
linear norMarkovian; an example of which is shown in Figure 11. In that example, the policy graph is notMarkovian as
the node in the first stage has one child in the second stage and one in the third stage. Variations of these acyclic policy
graphs are well studied in the work of Rebennack (2016).

F IGURE 11 A non-Markovian policy graph.

Non-Markovian policy graphs reinforce the need to distinguish between a node and a stage. However, once this
distinction is made, we can easily express problems with a random number of stages such as those considered by
Guigues (2018). An example is shown in Figure 12. In this policy graph, it appears that there are a random number of
stages because the agent maymake two, three, or four decisions depending onwhich path they take through the graph.
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This example is a good demonstration of how the policy graph approach is able to generalize existing special cases in the
literature.

F IGURE 12 A policy graphwith random transitions between stages.

3.2 | Cyclic policy graphs
The examples abovewere all acyclic. However, the policy graph approach naturally extends to infinite-horizon problems.
For example, Figure 13 shows an infinite-horizon, Decision-Hazard problemwith some probability of exiting the cycle
into a final recourse node.

One approach to solving infinite-horizon problems is to incorporate a discount factor in order to produce a finite
sum of the future costs (assuming, of course, a bounded stage-objective); this can be represented in a policy graph by
allowing the probabilities of the arcs exiting a stage to sum to less than one. Implicitly, this results in the addition of
a leaf nodewith zero cost (Figure 14). The discount factor p can be interpreted as a 1 − p probability that the system
stops (Puterman, 1994; Bertsekas, 2005). Sometimes, it is more natural to express the discount factor in terms of an
interest rate r , such that ρ = 1/(1 + r ).

It is important to reiterate that the transition between nodes is random and exogenous to the rest of the problem
(i.e., the states, controls, and noise). The two diagrams do not represent stopping problemswhere the agent canmake
the decision to exit the cycle. Instead, stopping problems can bemodelled with a binary state variable representing
whether the agent is stopped or not.

We are almost ready to describe the optimization problem of finding the optimal decision-rule for each node.
However, before we proceed, it is necessary to introduce the concept of risk.

3.3 | Risk
At every node in the policy graph of a multistage stochastic programming problem, the agent needs some way of
aggregating the future cost of a control across the future uncertainty. They do so via a risk measure.
Definition A risk measure Æ is a function that maps a random variable to a real number.

To elaborate upon this definition, we draw heavily from Shapiro et al. (2009, Ch. 6.3). In this paper, we restrict
our attention to random variables with a finite sample spaceΩ := {z1, z2, . . . , zK } equippedwith a sigma algebra of all
subsets ofΩ and respective (strictly positive) probabilities {p1, p2, . . . , pK }. This greatly simplifies the analysis of risk
and is a required assumption for our proposed solution technique (SDDP).We denote the random variable with the
uppercase Z .

F IGURE 13 A cyclic policy graph.
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w.p. p

w.p. 1 − p

F IGURE 14 Cyclic policy graphwith implicit leaf node.

In this paper, we shall use the following risk measures: Expectation (Å[Z ]), Average Value-at-Risk (AV@R1−β [Z ]),
andWorst-case (max[Z ]). The Expectation andWorst-case risk measures are self-explanatory. However, the Average
Value-at-Risk is worth explaining for readers unfamiliar with it.
Definition According to Rockafellar and Uryasev (2002), the Average Value-at-Risk1 at the β quantile (AV@R1−β ) is:

AV@R1−β [Z ] = inf
ζ

{
ζ +

1

β

K∑
k=1

pk (zk − ζ)+

}
,

where (x )+ = max{0, x }.
As a simple approximation, the AV@R1−β can be thought of as the expectation of the worst β fraction of outcomes.
However, if the distribution of the random variable is not continuous (e.g., the distribution is discrete), the interpretation
is subtler since wemay have to split a discrete probability atom (see Rockafellar and Uryasev (2002) for more details).
Also note that when β = 1, AV@R1−β [Z ] = Å[Z ], and limβ→0AV@R1−β [Z ] = max[Z ].

We use these risk measures (Expectation, AV@R, and Worst-case) because they are coherent according to the
following axioms.
Definition A coherent riskmeasure is a riskmeasure Æ that satisfies the axioms of Artzner et al. (1999). For two discrete
random variables Z1 and Z2, each with drawn from a sample space with K elements, the axioms are:

• Monotonicity: If Z1 ≤ Z2, then Æ[Z1] ≤ Æ[Z2].
• Sub-additivity: For Z1, Z2, then Æ[Z1 + Z2] ≤ Æ[Z1] + Æ[Z2].
• Positive homogeneity: If λ ≥ 0 then Æ[λZ ] = λ Æ[Z ].
• Translation equivariance: If a ∈ Ò then Æ[Z + a] = Æ[Z ] + a .

We can also define coherent risk measures in terms of risk sets (Artzner et al., 1999; Shapiro et al., 2009). That is, a
coherent risk measure Æ has a dual representation that can be viewed as taking the expectation of the random variable
with respect to the worst probability distribution within some setA of possible distributions:

Æ[Z ] = sup
ξ∈A

Å ξ [Z ] = sup
ξ∈A

K∑
k=1

ξk zk , (1)

whereA is a convex subset of:

P =

{
ξ ∈ ÒK :

K∑
k=1

ξk = 1, ξ ≥ 0
}
.

1Rockafellar and Uryasev (2002) actually call this the Conditional Value-at-Risk (CV@R); however, we follow Shapiro et al. (2009) and refer to it as AV@R.
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Following Philpott et al. (2013), we shall refer to the probability distribution ξ that attains the supremum of (1) as
the changed probability distribution.

The three riskmeasures described above (Expectation, AV@R, andWorst-case) can be expressed in terms of the set
A as follows:

• Expectation: If A is a singleton, containing only the original probability distribution, then the risk measure Æ is
equivalent to the expectation operator.

• AV@R: IfA = {
ξ ∈ P | ξk ≤ pk

β , k = 1, 2, . . . ,K
}
, then the risk measure Æ is equivalent to AV@R1−β .

• Worst-case: IfA = P, then Æ is theWorst-case risk measure.

3.4 | Standard form
Let us recapwhat we have discussed so far. We can decompose amultistage stochastic programming problem into a
series of nodes. The nodes are linked together by state variables, and we can describe the linkages by a policy graph G.
Associated with each node i is a decision-rule πi (xi ,ωi ) (πi (xi ) for Decision-Hazard), which maps the incoming state
variable xi and realization of a random noiseωi , to a feasible control ui ∈ Ui (xi ,ωi ) (ui ∈ Ui (xi ) for Decision-Hazard).
As a result of taking the control ui , the state transitions to the outgoing state x ′i according to the transition function
x ′
i
= Ti (xi ,ui ,ωi ), and a cost ofCi (xi ,ui ,ωi ) is incurred. Then, the system transitions to a new node in the policy graph

according to theMarkov transition matrix Φ. All that remains is to define an optimization problem that can be used
to find the optimal decision-rule πi for each node i . To do this, we utilize Bellman’s principle of optimality and form the
cost-to-go for each node i , given the incoming state xi and realization of the noiseωi .
Definition Principle of Optimality: An optimal policy has the property that whatever the initial state and initial decisions
are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decisions.
(Bellman, 1954)
Definition Given a policy π , the cost-to-go for node i is the stage-objective as a result of taking the control ui , plus the
risk-adjusted cost-to-go of the node’s children:

Vi (xi ,ωi ) = Ci (xi ,ui ,ωi ) + Æi
j ∈i+ ; ωj ∈Ωj

[
Vj (Ti (xi ,ui ,ωi ),ωj )

]
,

where ui = πi (xi ,ωi ) if the node is Hazard-Decision, and ui = πi (xi ) if the node is Decision-Hazard.
Note that when we use the notation Æ j ∈i+ ; ωj ∈Ωj [·], we mean that we apply the risk measure to the distribution of
outcomes for all nodes j ∈ i+ and realizationsωj ∈ Ωj . Since the noise realization and node transition are independent,
from node i , the probability of realizingωj in the next node isφi ,j × pωj (i.e., the probability of transitioning from node
i to node j , multiplied by the probability of realizing ωj in node j ). Also note that when maximizing, we refer to the
value-to-go instead of the cost-to-go.

Putting together all thatwe have discussed so far, we can nowdefine the class ofmultistage stochastic programming
problems that we consider in the remainder of this paper.
Definition Given a policy graph G, amultistage stochastic programming problem is an optimization problem of the form:

min
π

{
Æ

i ∈R+ ; ωi ∈Ωi
[Vi (xR ,ωi )]

}
, (2)
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where xR is the initial condition of the state variable at the root node.

Readers should note that in the interests of generality, we have purposefully avoided a definition of the spaces
onwhichCi ,Ti , andUi are defined. For now, we just assume that (2) is well-posed, andwewill return to this question
in the next section. Moreover, readers should note that our definition does not encompass all multistage stochastic
programming problems. For example, it does not consider continuous time problems. In addition, for the algorithmwe
propose wewill require further assumptions that wemake precise in the next section.

Although each Æ is a single-period risk measure of the type discussed in Section 3.3, the nested formulation of the
cost-to-go functionV creates a conditional risk mapping (Ruszczyński and Shapiro, 2006). However, our since our
framework allows the single-stage risk measures to differ between nodes, one can model expected conditional risk
measures (Homem-de-Mello and Pagnoncelli, 2016), and end-of-horizon riskmeasures by dynamically changing the
single-period riskmeasures in each subproblem (Pflug and Pichler, 2016; Baucke et al., 2018). Moreover, because the
risk measure is applied locally to each node in a nested fashion, the property of time consistency naturally arises. (A
proper discussion on time-consistency is out-of-scope for the current paper, see, e.g., Shapiro et al. (2009); Homem-
de-Mello and Pagnoncelli (2016); Valladão et al. (2019).) Finally, note that the non-anticipative constraints usually
associated withmultistage stochastic programming are satisfied by our recursive definition of a policy.

The goal of multistage stochastic programming is to find the policy π that solves (2). If the policy π is not given
explicitly, the decision rule for node i can be formulated as an optimization problem. The formulation is different
depending uponwhether the node is Hazard-Decision or Decision-Hazard. We call the optimization problem associated
with each node a subproblem.
Definition AHazard-Decision subproblem is the optimization problem:

HDi (xi ,ωi ) : Vi (xi ,ωi ) = min
ui ,x̄i ,x

′
i

Ci (x̄i ,ui ,ωi ) + Æi
j ∈i+ ; ωj ∈Ωj

[
Vj (x ′i ,ωj )

]
s.t. x̄i = xi

x ′
i
= Ti (x̄i ,ui ,ωi )

ui ∈ Ui (x̄i ,ωi ),

(3)

where the decision-rule πi (xi ,ωi ) takes the value of ui in the optimal solution.

Definition ADecision-Hazard subproblem is the optimization problem:

DHi (xi ) : Vi (xi ) = min
ui ,x̄i ,x

′
i ,ωi

Æi
ωi ∈Ωi ; j ∈i+

[
Ci (xi ,ui ,ωi ) +Vj

(
x ′
i ,ωi

)]
s.t. x̄i = xi

x ′
i ,ωi

= Ti (x̄i ,ui ,ωi ), [ωi ∈ Ωi
ui ∈ Ui (x̄i )

(4)

where the decision-rule πi (xi ) takes the value of ui in the optimal solution.

Note that with the appropriate modifications to the cost-to-go terms, a policy graph can contain both Hazard-Decision
andDecision-Hazard nodes.

Finally, a few last pieces of terminology. Given a policy π , we can simulate themultistage stochastic programming
problem by the procedure given in Algorithm 1. As a result, we end upwith a sequence of nodes i n , states xn , controls
un , noise termsωn , and costs cn for n ∈ {1, . . . ,N }.
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Algorithm 1: Simulating the policy.
set x1 = xR
set n = 1
set i 0 = R
while i n−1+ , ∅ do

sample i n from i n−1+
sampleωn fromΩi n

if i n is Hazard-Decision then
set un = πi n (xn ,ωn )

else
set un = πi n (xn )

end
set cn = Ci n (xn ,un ,ωn )
set xn+1 = Ti n (xn ,un ,ωn )
set n = n + 1

end

We also need to define a scenario and the cumulative cost of a scenario.
Definition A scenario is a sequence of node and noise realizations

(i 1,ω1), (i 2,ω2), . . . , (iN ,ωN ).

Definition The cumulative cost of a scenario is∑N
n=1 c

n .

4 | PROPOSED ALGORITHM
So far in this paper, we have defined a general class of multistage stochastic programming problems. Now, we describe
an extension of the stochastic dual dynamic programming (SDDP) algorithm (Pereira and Pinto, 1991; Philpott and
Guan, 2008; Shapiro, 2011; Girardeau et al., 2015; Guigues, 2016) to the policy graph setting. We note that SDDP is not
the only algorithm for solving multistage stochastic programs. Other methods, such as progressive hedging (Rockafellar
andWets, 1991), decompose themodel by scenario. We use SDDP because it naturally arises from the decomposition
structure of a policy graph.

Our algorithm cannot solve a general policy graph. Instead, given a policy graph G = (R ,V, E,Φ), it requires the
following assumptions.

(A1) The number of nodes inV is finite.
(A2) Every node in the policy graph is hazard-decision.
(A3) The sample spaceΩi of random noise outcomes is finite at each node i ∈ N.
(A4) Given fixedωi and xi , and excluding the risk-adjusted expectation term Æi[·], the subproblem associated with each

node i ∈ N can be formulated as a linear programming problem.
(A5) For every node i ∈ N, there exists a bounded and feasible optimal control ui for every achieved incoming state xi

and realization of the noiseωi .
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(A6) For every node i ∈ N, the sub-graph rooted at node i has a positive probability of reaching a leaf node.
(A7) The outgoing state variable x ′

i
belongs to a polytopeXi .

At first glance, these assumptions seem restrictive. However, let us make some comments regarding them. Assump-
tions (A1) – (A5) are variations of standard assumptions in the literature (Philpott and Guan, 2008). Readers should
note that, although unstated, the formulation as a policy graph induces the commonly required assumption thatω is a
stagewise-independent random variable and that the nodal transitions areMarkovian. Although, as wementioned in
Section 3.1, stagewise-dependent processes can bemodelled with an appropriate state-space expansion. Moreover,
as we showed in Figure 3, assumption (A2) is less taxing than first assumed since any decision-hazard node can be
reformulated into two hazard-decision nodeswith an expanded state-space (Street et al., 2018). Under certain technical
assumptions, such as an appropriate constraint qualification, assumption (A4) can be relaxed to a convex optimization
problem; see Girardeau et al. (2015) for details. Regardless, (A4) places a number of conditions (e.g., convexity and
continuity) on the functionC , mappingT and feasibility setU . Assumption (A6) enforces a discounted infinite-horizon
view of theworld as opposed to an expected long-run average cost view of theworld. It is also another way of saying
that the discount factor around a cycle cannot be 1. (In the limit as the discount factor approaches 1, the discounted
infinite-horizon policy converges to the average cost policy (Bertsekas, 2005).) Finally, assumption (A7) restricts the
state variables to a bounded set so thatwe cannot have a sequence of divergent state variables aswe simulate a forward
path via Algorithm 1.

There are many examples in the literature of similar algorithms and convergence proofs for various special cases of
the policy graph. For example, in rough chronological order:

• Pereira and Pinto (1991) introduced the original SDDP algorithm for the case of a linear policy graph and a linear
subproblem. However, the idea can be traced back to Benders decomposition (Benders, 1962) and the L-shaped
method of Van Slyke andWets (1969) (originally for two-stage problems, it was extended to themultistage case by
Louveaux (1980) and Birge (1985)). SDDP has been studied extensively in the literature (Philpott and Guan, 2008;
Shapiro, 2011; Shapiro et al., 2013; Girardeau et al., 2015; Guigues, 2016). We can also recommend the accessible
introductions to SDDP provided by Newham (2008, Ch. 4), Guan (2008, Ch. 5), and Dowson (2018, Ch. 2).

• Many variants of the SDDP algorithmwere presented in the literature, including AND (Donohue and Birge, 2006),
CUPPS (Chen and Powell, 1999), and ReSa (Hindsberger, 2014).

• Philpott andGuan (2008) proved the almost sure convergence of amodified version of SDDP. Earlier proofs, such as
those by Chen and Powell (1999) and Linowsky and Philpott (2005), made use of an unstated assumption regarding
the application of the second Borel-Cantelli lemma (Grimmett and Stirzaker, 1992). To differentiate their modified
algorithm from the original SDDP, Philpott and Guan refer to their algorithm as DOASA.

• Various authors (Gjelsvik et al. (1999); Philpott and de Matos (2012)) presented algorithms for the Markovian
policy graph setting, although none provided convergence results.

• Girardeau et al. (2015) proved the almost sure convergence of DOASA-type algorithms on a linear policy graph and
a convex subproblem.

• Guigues (2016) proved the almost sure convergence of DOASA-type algorithms on problemswith coherent risk
measures.

• Rebennack (2016) presented an algorithm and convergence result for a general acyclic policy graph.
• Nannicini et al. (2017) presented an algorithm and convergence result for a linear policy graph that contains one

cycle.
• Warrington et al. (2019) presented an algorithm and convergence result for a cyclic policy graphwith a single node
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and no noise terms.
• Baucke et al. (2018) presented a very similar result toWarrington et al. (2019), but used an exact upper bound-

ing function to extend the analysis to a cyclic policy graph with any finite number of nodes, but no stagewise-
independent noise terms. However, note that any node with stagewise-independent noise terms can be expanded
into a collection of nodes with one node for each discrete realization of the noise term. Thus it is always possible to
transform a problem from the setting used in this paper into the setting of Baucke.

• Guigues (2018) presented an algorithm and convergence result for problems with a random number of stages;
these can be viewed as a linear policy graphwith additional arcs between nodes such that the graph remains acyclic.

• Shapiro andDing (2019) present an algorithm (but no convergence result) forMarkovian policy graphs with a single
cycle. Their algorithm is a sub-class of the algorithm of Nannicini et al. (2017) because it only considers roll-outs of
a fixed length. However, they show the computational and policy benefit of considering infinite horizonmodels in a
real-world case study of the Brazilian Interconnected Power System.

The extension to SDDPwe describe in the remainder of this section generalizes the body of work just outlined. The
key difference in our work compared to theMarkov decision process literature (Puterman, 1994) and the stochastic
optimal control literature (Bertsekas, 2005) is that we consider continuous state and control variables. For readers
unfamiliar with the SDDP algorithm, it can be viewed as a form of value iteration (Howard, 1960), approximate linear
programming (de Farias and van Roy, 2003), or approximate dynamic programming (Powell, 2011) in which we exploit
the structure of the problem through linear programming duality to derive provably optimal basis functions.

Due to assumptions (A1)–(A7), the risk-adjusted cost-to-go function Æ [
Vj (x ′i ,ωj )

] is convex with respect to the
state variable x ′

i
. Therefore, it can be replaced by a variable θi and approximated by the maximum of a set of affine

functions, which we refer to as cuts. Like SDDP, our algorithm constructs the set of cuts iteratively. Each iteration
consists of two phases: a forward pass, which samples a sequence of subproblems and values for the state variables
S = [(i1, x ′i1 ), (i2, x

′
i2
), . . . ]; and a backward pass, which refines the approximation of the cost-to-go function by adding a

new cut to each of the subproblems visited in the forward pass. The resulting approximated subproblem at node i after
K iterations can be expressed as:

SPKi : V K
i
(xi ,ωi ) = min

ui ,x̄i ,x
′
i
,θi

Ci (x̄i ,ui ,ωi ) + θi

s.t. x̄i = xi , [λi ]
x ′
i
= Ti (x̄i ,ui ,ωi )

ui ∈ Ui (x̄i ,ωi )
x ′
i
∈ Xi

θi ≥ αki + 〈β
k
i
, x ′
i
〉, k ∈ {1, 2, . . . ,K },

(5)

where 〈x , y 〉 = x>y . Note that λi is the vector of dual variables associated with the constraints x̄i = xi . In other words,
λi is a valid subgradient for the functionV Ki (xi ,ωi )with respect to xi .

In the literaturemany authors (Pereira and Pinto, 1991; Philpott and Guan, 2008) compute the subgradient ofV K
i

with respect to the incoming state variables xi by computing a transformation of the dual of the transition constraints
(i.e., x ′

i
= Ti (x̄i ,ui ,ωi )), taking into account the feasible set of actions Ui . This approach is overly complicated. Our
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solution (also used by Girardeau et al. (2015)) is to make x̄i a dummy variable with the constraint2:

x̄i = xi , [λi ].

This has downside of adding one extra variable and constraint for each state variable, but results in a simpler subgradient
calculation.

4.1 | Computing cut coefficients
Wenow explain how to calculate the cut coefficients α and β . Consider a node j , given an incoming state variable x̂ and
a realization of the noiseωj . We can solve SPKj and record the optimal objective valueV Kj (x̂ ,ωj ), which we denote V̄ Kj ,ωj ,and the optimal value of the dual variable λj , which we denote λ̄Kj ,ωj . SinceV Kj is convex with respect to xj , we have that:

V Kj (xj ,ωj ) ≥ V̄
K
j ,ωj

+ 〈λ̄Kj ,ωj , xj − x̂ 〉,

Re-arranging termswe get:

V Kj (xj ,ωj ) ≥
(
V̄ Kj ,ωj

− 〈λ̄Kj ,ωj , x̂ 〉
)
+ 〈λ̄Kj ,ωj , xj 〉.

However, recall that wewish to approximate the cost-to-go function :

Æi
j ∈i+ ; ωj ∈Ωj

[
Vj (x ′i ,ωj )

]
.

To do so, consider the following proposition from Philpott et al. (2013, Proposition 4), which follows from Danskin’s
theorem (Shapiro et al., 2009, Theorem. 7.25), andwhichwe re-state using our notation. (Recall that ξ is the changed
probability distribution from Section 3.3.)
Proposition 1 Suppose, for each ω ∈ Ω, that λ(x̂ ,ω) is a subgradient ofV (x ,ω) at x̂ . Then, given ξ such that Æ[V (x̂ ,ω)] =
Åξ [V (x̂ ,ω)], Åξ [λ(x̂ ,ω)] is a subgradient of Æ[V (x ,ω)] at x̂ .
Using this result, we can construct a valid cut via themethod given in Algorithm 2.

Algorithm 2:Cut calculation algorithm.
Given x̂
Solve SPKj (x̂ ,ωj ) for all j ∈ i+ andωj ∈ Ωj
Compute ξ so that Åξ

[
V̄ K
j ,ωj

]
= Æi
j ∈i+ ;ωj ∈Ωj

[
V̄ K
j ,ωj

]
Set βK+1

i
= Åξ

[
λ̄K
j ,ωj

]
Set αK+1

i
= Åξ

[
V̄ K
j ,ωj

]
− 〈βK+1

i
, x̂ 〉

Obtain the inequality Æj ∈i+ ; ωj ∈Ωj
[
Vj (x ′i ,ωj )

]
= θi ≥ αK+1i

+ 〈βK+1
i
, x ′
i
〉

2Alexandre Street andDavi Valladão call this the fishing dual.
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4.2 | An iteration
We now describe an iteration of our algorithm in more detail. Each iteration consists of two phases: a forward pass,
which samples a sequence of nodes and points in the state-space; and a backward pass, which uses the cut calculation
algorithm to refine the approximation of the cost-to-go function at the points in the state-space visited on the forward
pass.

In the forwardpass of our algorithm,we sequentially solve a sequenceof subproblems. After solving the subproblem
at each node i , we terminate the forward pass and begin the backward pass with probability 1 −∑

j ∈i+φi j . (Recall,φi j is
the probability of transitioning from node i to node j .) This probabilistic termination is equivalent to reaching a dummy
leaf node with Ci (·, ·, ·) = 0. If we do not terminate the forward pass, we sample a new child node and continue the
forward pass. Note also that if a node has no children (i.e., i+ = ∅), then∑

j ∈i+φi j = 0 and we terminate the forward
pass with probability 1. In addition, we choose a large finite τ and terminate the forward pass once we have sampled τ
nodes in the sequence. We refer to this τ as themaximum depth. We discuss the choice of τ in more detail in Section 4.6.
Pseudo-code for the forward pass is given in Algorithm 3. Note that r and () samples a uniformly distributed random
variable in [0, 1].

Algorithm 3: Forward pass.
choose large, finite τ
set x = xR
set S = [ ]
set i = R
while (r and () > 1 −∑

j ∈i+φi j ) ∧ ( |S | < τ) dosample new i from i+ according to the transitionmatrixΦ
sampleωi fromΩi

solve SPK
j
(x ,ωi )

append (i , x ′
i
) to the list S

set x = x ′
i

end

Given a list of nodes visited on the forward pass (and corresponding sampled points in the state-space), the
backward pass of our algorithm is identical to standard SDDP implementations. Pseudo-code for the backward pass is
given in Algorithm 4. Note that because wemay end the forward pass at a leaf node or due to a cycle, we need to check
that a node has children before attempting to update the value function. This condition (i+ = ∅) will only hold for the
last element in S if the forward pass reached a leaf node. However, placing this check in the backward pass simplifies
the logic in other parts of the algorithm. r ever se(S) loops through the elements in the list S in the reverse order that
they were inserted, i.e., from last to first.

It is also important to note that one backward pass may add multiple cuts to the same node if the forward pass
sampled that nodemultiple times before termination. Thus, theremay be different numbers of cuts at different nodes in
the graph. For notational simplicity, we shall continue to useV K

i
tomean the approximated subproblemwithK cuts, and

we assume that this always refers to themaximum number of cuts added to that subproblem.
Readers should also note that there is no mention of cut sharing in our algorithm. (Cut sharing is the practice of

using one cut to approximate the cost-to-go function at different nodes in a scenario tree, effectively “sharing” the cut
between them. Formore, see Infanger andMorton (1996); Rebennack (2016).) This is because a policy graph can be
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thought of compressed scenario tree, where nodes in the scenario tree have beenmerged into a single policy graph
node if and only if the cuts could be shared between them in SDDP. This suggests that SDDP is a natural solution algorithm
for multistage stochastic programs formulated as a policy graph.

Algorithm 4:Backward pass.
given S from forward pass
for (i , x̂ ) in r ever se(S) do
if i+ = ∅ then

/* This check accounts for the case when the forward pass reached a leaf node. */

continue
end
for j ∈ i+ do
forωj ∈ Ωj do
solve SPK

j
(x̂ ,ωj )

set θ̄K
j ,ωj
to the optimal objective value

set λ̄K
j ,ωj
to the value of λj in the optimal solution

end
end
compute ξ so that Åξ

[
θ̄K
j ,ωj

]
= Æi j ∈i+ ;ωj ∈Ωj

[
θ̄K
j ,ωj

]
set βK+1

i
= Åξ

[
λ̄K
j ,ωj

]
set αK+1

i
= Åξ

[
θ̄K
j ,ωj

]
− 〈βK+1

i
, x̂ 〉

add the cut θi ≥ αK+1i
+ 〈βK+1

i
, x ′
i
〉 to SPK

i

end

4.3 | Lower bound

Since the cuts at each node form an outer-approximation of the cost-to-go function, we can obtain a valid lower bound
y to themultistage stochastic programming problem 2 by evaluating:

y = Æ
i ∈R+ ; ωi ∈Ωi

[
V Ki (xR ,ωi )

]
.

4.4 | Upper bound

Wedonot have an exact upper bound for this algorithm. This is not unique to our algorithmand is common in SDDP-type
algorithms. (Some recent work has been done on upper bounds in the linear policy graph case, see e.g., Baucke et al.
(2018); Leclère et al. (2018).) In the case when all of the risk measures in the policy graph are the expectation operator,
an unbiased estimate for the upper bound for the problem can be obtained by performing aMonte Carlo simulation
of the policy. This approach is commonly used in SDDPwith acyclic policy graphs (see, e.g., Pereira and Pinto (1991)).
Pseudo-code is given in Algorithm 5. In the risk-averse case, we do not have an upper bound.



DOWSON 21

Algorithm 5:Upper bound calculation.
choose large, finite τ
for n = 1,. . . ,N do
set x = xR
set i = R
set yn = 0
while (r and () > 1 −∑

j ∈i+φi j ) ∧ ( |S | < τ) dosample new i from i+ according to the transitionmatrixΦ
sampleωi fromΩi

solve SPK
j
(x ,ωi )

set yn = yn +V Ki (x ,ωi )
set x = x ′

i

end
end
Calculate the samplemean
ȳ = 1

N

N∑
n=1

yn

Form a confidence interval around ȳ for the populationmean based on {yn }N1

4.5 | Termination
The upper bound discussed above is statistical. Recently, somework has explored deterministic upper bounds (Philpott
et al., 2013; Baucke et al., 2018; Leclère et al., 2018), but we have not attempted to adapt those results to our setting.
In lieu of a deterministic upper bound, the question of when to terminate SDDP-type algorithms is an open question.
Various rules for terminating have been proposed in the literature, and all have their strengths andweaknesses. The
most commonly used termination criteria is to terminate the algorithm once the lower bound is within the confidence
interval of the upper bound (Pereira and Pinto, 1991). We direct the reader to Homem-de-Mello et al. (2011) for a
discussion on some of the subtler aspects of this criteria.

4.6 | Convergence argument
Let us turn our attention to the convergence of our algorithm. In many cases, SDDP-type algorithms have been shown
to converge to an optimal policy almost surely in a finite number of iterations (Philpott and Guan, 2008; Girardeau et al.,
2015; Guigues, 2016). We do not claim such a result for our algorithm on a general policy graph. In part, this is because
duality results in the infinite-horizon setting are often challenging to obtain (Ghate and Smith, 2013). However, the
large finite τ in our algorithm induces a truncation of the full infinite-horizon problem into a finite-horizon problem. To
understand this, consider the cyclic policy graph given in Figure 15.

w.p. ρ w.p. 1 − ρ

F IGURE 15 Cyclic policy graphwith implicit leaf node.
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Ifwe choose themaximumdepth to beτ = 4, thenwe can un-roll the cycle of the policy graph toobtain the equivalent
policy graph given in Figure 16. Note that we have slightly abused our notation in Figure 16 since the decision-rule at
each node is identical and all four hazard-decision nodes will share the same set of cuts approximating the cost-to-go
function.

1 ρ ρ ρ

1 − ρ 1 − ρ 1 − ρ
1

F IGURE 16 Unrolled cyclic policy graphwith implicit leaf nodes in the case where τ = 4.

Importantly, the unrolled policy graph is no longer cyclic. Instead, it is an acyclic Markovian policy graph. Therefore,
given the truncation, the finite convergence of our algorithm follows directly from existing proofs in the literature
(Philpott and Guan, 2008; Girardeau et al., 2015; Guigues, 2016). However, because of the truncation, we do not
obtain the optimal policy for the original problem. Moreover, because each node shares the same set of cuts, we do
not obtain the optimal policy to the linear policy graphwith τ stages. Instead, assuming that the truncated problem is
well-behaved compared to the original problem (in the sense that as τ increases, the optimal policy of the truncated
problem converges to the optimal policy of the original problem), it is possible to bound the truncation error by some
value ε as a function of themaximum depth τ . The relationship between ε and τ depends on the structure of the policy
graph. Thus, instead of presenting a general result, we will prove the finite ε−convergence of our algorithm for a simple
cyclic policy graph containing one node that loops back onto itself (Figure 15). Despite the simple setting, readers should
easily see how the proof can be extended tomore complicated policy graphs.

To begin, assume that there exists a large, finiteM such that |Ci (xi ,u∗i ,ωi ) | ≤ M < ∞ for all i ∈ N, ωi ∈ Ωi , and
achievable values for the incoming state xi . A value forM always exists since by assumptions (A4), (A5), and (A7), each
subproblem is a bounded and feasible linear program, and the set of possible values for xi is also bounded. Then

−M
1 − ρ ≤ Æ

j ∈i+ ; ωj ∈Ωj
[
V (x ′i ,ωj )

]
≤ M

1 − ρ , (6)

where u∗
i
is the optimal control.

By assumption (A6), ρ < 1, and soM /(1 − ρ) is finite. Now consider unrolling the cycle of the policy graph in Figure
15 so that it contains τ nodes. As we have already seen, an example where τ = 4 is given in Figure 16. Based on the
bound derived in (6), we know that in the last node, a bound on the cost-to-go that we have notmodeled (because we
truncated the infinite-horizon problem to τ nodes) is:���� Æ

i ∈R+ ; ωi ∈Ωi
[V (xR ,ωi )] − Æ

i ∈R+ ; ωi ∈Ωi
[
V̄ ∗(xR ,ωi )

] ���� = ε ≤ ρτ × 2M

1 − ρ ,

where V̄ ∗ is the converged cost-to-go function of the truncated problem. This error ε can bemade arbitrarily small by
choosing a large, finite τ .

We note that our algorithm, and this convergence argument, is very similar to the work of Nannicini et al. (2017).
The key difference is that we choose amaximum depth τ a priori and use the transition probabilities to terminate the
forward pass, whereas Nannicini et al. (2017) use an iterative method to slowly increment the value of τ until the
required ε-convergence is achieved, and they do not use the transition probabilities to terminate the forward pass.
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Moreover, due to policy graph formulation, our algorithm applies to arbitrary graphs, as opposed to the linear policy
graph with a single cycle considered by Nannicini et al. (2017). However, it is likely that their method also extends to the
arbitrary policy graph case.

We also highlight the work of Legat and Jungers (2016) who (in an application arising from information theory and
not stochastic programming) proposed an algorithm for a cyclic policy graphwhenCi (·, ·, ·) = 0. Like our algorithm, their
algorithm includes amaximum depth limit that is used to terminate the forward pass. Notably, their work considers
problems without relatively complete recourse, and so Benders feasibility cuts are generated at each node in the graph.

5 | EXAMPLE: PASTORAL DAIRY FARMING
To demonstrate the practicality of our algorithm, we solve a single instance of a multistage stochastic programming
model from the literature. Since we only solve this one instance, we will not draw strong conclusions about the
computational performance of the method, or the impact on solution times and policy quality of choosing different
parameters (such as the discount factor). We leave these tasks for future work.

The POWDermodel of Dowson et al. (2019) is a multistage stochastic programmingmodel of a pastoral dairy farm
over the course of one year. POWDer decomposes the year into aMarkovian policy graphwith 52weekly stages. The
decision process is modelled as follows. At the beginning of week t = 1, 2, . . . , 52, the farmermeasures the five state
variables in themodel: the soilmoistureWt (mm), the pasture cover Pt (kg/ha), the quantity of grass in storageQ t (kg/ha),
the number of cowsmilkingCt (cows/ha), and the quantity of milk solids produced to dateMt (kg/ha). Before choosing
an action for theweek, the farmer observes the realization of the two stagewise-independent random variables: the
potential evapotranspiration3 ept (mm), and the quantity of rainfall rt (mm). TheMarkov states in theMarkovian policy
graph correspond to a forecast for the price that the farmer receives for their milk in the last stage of each year ($/kg).
We refer to this price as the end-of-seasonmilk price. During the year, we refer to the forecast for the end-of-season
milk price associated eachMarkov state as the forecastmilk price. Taking into account the incoming values of the state
variables, theMarkov state pt , and the observation of the stagewise-independent noise term, the farmer decides the
quantity of pasture to harvest ht (kg/ha), the number of cows to stopmilking ut (cows/ha), and the quantities of grass
from pasture f pt , grass from storage f qt , and palm kernel st to feed the herd (all kg/ha). As a result of these actions,
the system transitions to a new state that will serve as the incoming state in the next week, and the farmer incurs the
cost of purchasing palm kernel, harvesting pasture, and applying irrigation. In the last week, the forecast milk price
becomes the end-of-seasonmilk price, and the farmer sells all of themilk produced during the seasonM53 (kg/ha) at the
end-of-seasonmilk price p52 ($/kg).

As a simple example of the dynamics in themodel, considerQ t (kg/ha), the quantity of grass in storage at the start
of week t . This is a state variable with linear dynamics:

Q t+1 = Q t + βht − f qt ,

where ht (kg/ha) is the quantity harvested, β is the harvesting efficiency < 1, and f qt (kg/ha) is the amount of grass from
storage fed to the cows. As a result, the farmer incurs a cost of ch × ht in week t , where ch is the cost of harvesting one
kg of grass (a constant in themodel).

POWDer is able tomodel the effect of weather and price uncertainty on themanagement actions of the pastoral
dairy farmer. However, because of the finite-horizon assumption, the authors introduced a penalty if the pasture

3A function of sunlight and temperature that is positively correlated to grass growth.
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cover at the end of the year was less than the pasture cover at the start of the season. In this section, we relax this
constraint andmodel POWDer as an infinite-horizon problem. We retain the 52weekly stages andMarkovian policy
graph structure used in Dowson et al. (2019), and assume that the end of week 52 is equivalent to the start of week 1. A
graphical representation of the policy graph is given in Figure 17. We assume that the discount factor associated with
the arcs exiting nodes in the 52nd stage is <1.

t = 52t = 51. . .t = 26t = 25. . .t = 1

$8
$7
$6
$5
$4

F IGURE 17 Infinite-horizonMarkovian policy graph of the POWDermodel. Stages correspond to weeks of the
year, Markov states correspond to forecasts for the end-of-seasonmilk price.

5.1 | Results
Based on our domain knowledge of the POWDermodel, we can derive an lower bound for the expected value of each
season by assuming that nomilk is produced and all of the energy required by the cows is derived from palm kernel.
Using the data fromDowson et al. (2019), a conservative value for this lower bound is −$11,000/ha/year. In addition,
we can derive an upper bound for the expected value of each season by assuming that every cow produces themaximum
quantity of milk, that the farmer sells this milk at the expected end-of-seasonmilk price, and that they incur no costs.
Using the data fromDowson et al. (2019), a conservative value for this upper bound is +$10,000/ha/year. Thus, we can
obtain a bound on ε as a function of the discount factor ρ andmaximum depth τ of:

ε ≤ ρτ/52 × 2 · 11, 000
1 − ρ . (7)

We solved the infinite-horizon POWDermodel for 1000 iterations using a discount factor of ρ = 0.95 andmaximum
depth of τ = 18, 200 (350 cycles). Thus, from (7), we know that ε ≤ $0.01/ha. Also note that the probability of reaching τ
in the forward pass is ≈ 10−8 (i.e., 0.95350). This value is so small that in practice we never complete a forward pass (in
either the training iterations or the simulation of the policy) that reaches stage τ . After iterations 200, 400, 600, 800,
and 1000, we performed aMonte Carlo simulation of the policy with 1000 replications to obtain a confidence interval
for the lower bound. (Note that upper and lower are reversed since POWDer is amaximizationmodel.) A plot of the
lower and upper bounds as a function of the number of iterations is given in Figure 18.

We also simulated the policy after 1000 iterations with aMonte Carlo simulation of 1000 replications. Unlike the



DOWSON 25

0 200 400 600 800 1,000

100

150

200

Iterations

Ob
jec
tiv
e($
’00
0)

F IGURE 18 Convergence of the upper bound against the number of iterations for the POWDermodel with a
discount factor of ρ = 0.95. Thick vertical bars are 95% confidence intervals for themean of theMonte Carlo simulation
of the policy. The upper bound in the first 200 iterations is greater than $200,000.

simulation used to obtain an estimate for the lower bound, we did not terminate the forward pass with probability 1 − ρ
at the end of each season. Instead, we terminated the forward pass once five complete seasons had been simulated.
This simulation is visualized in Figure 19. In each of the subplots, we plot the 0–100 percentiles of the distribution of the
plotted variable as a light shaded band. The dark shaded bands correspond to the 10–90th percentiles. The dotted line
corresponds to the 50th percentile. Figure 19a shows the number of cows that aremilking (a state variable) at the end
of each stage. We start each season (August 1st) will all cowsmilking (i.e., 3 cows/ha). At some point during the season,
the farmer stops milking the cows, and the number of cowsmilking drops to zero. In Figure 19bwe plot the pasture
cover (a state variable) at the end of stage. Excluding the first season, the pasture cover exhibits strong seasonality
with aminimum around 500 kg/ha in July and amaximum of 2000 kg/ha in December. This seasonality is driven by the
evapotranspiration (a stagewise-independent noise), which we plot in Figure 19c. Since evapotranspiration is a function
of the incoming solar radiation and air temperature, it has amaximum in theNewZealand summer (Dec - Feb) and a
minimum in the NewZealandwinter (Jun - Aug).
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F IGURE 19 Simulation of the infinite-horizon policy over five seasons.

In Dowson et al. (2019), the authors placed a large penalty on ending the seasonwith a pasture cover of less than
2,500 kg/ha. They justified this by arguing that it was necessary for the pasture cover at the end of the year to be no
less than the pasture cover at the beginning of the year in order for the same policy to be used in consecutive years.
However, as shown in Figure 19b, this constraint is sub-optimal. Instead of ending the year with a pasture cover of 2,500
kg/ha (above the long-runmaximum), the optimal solution in the infinite-horizon policy is to end the seasonwith the
minimum pasture cover, enabling the pasture cover to synchronize with the evapotranspiration. We can also compare
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the discounted expected value the finite-horizon and infinite-horizon policies. In the finite-horizon case, POWDer
converges to a value of $5,782/ha/year. Discounting this value at a discount factor of ρ = 0.95 gives a discounted
expected value of $115,640/ha. In comparison, the infinite-horizon policy converges to a value of $119,439/ha. Thus,
the infinite-horizon policy leads to an increase of at least $3,799/ha (+3.3%) in the discounted expected value. This
demonstrates that the policy in the original paper of Dowson et al. (2019) was sub-optimal because of end-of-horizon
effects.

Regardless of the increase in value, themain benefit of the infinite-horizonmodel is that practitioners no longer
have to derive reasonable estimates for the terminal value function, or worry about the effect that their choice of
terminal value function has on the resulting policy. However, themain draw-back of solving the infinite-horizonmodel is
an increased computational cost. The difference in computational cost is qualitatively related to the discount factor ρ:
as ρ increases, the computational cost increases because the discounting becomes relevant over longer and longer time
horizons. The finite horizon problem is easier to solve because it corresponds to setting ρ = 0. (For more on this topic,
see Shapiro andDing (2019).) Ultimately, it is up to the practitioner tomake an application-dependent choice between a
finite-horizon and an infinite-horizonmodel, and to choose the discount factor within an infinite-horizonmodel.

6 | CONCLUSION
This paper introduced the policy graph as a structured way of formulating multistage stochastic programming problems.
The policy graph representation unifies many of the existing special case formulations of multistage stochastic program-
ming problems in the literature into one general framework. This paper also proposed an extension to the stochastic
dual dynamic programming algorithm to the case of a general policy graph. By truncating the infinite-horizon problem
with some small bounded error ε, we are able to recover an acyclic policy graph for which there are existing proofs of
convergence.

Although this paper has presented one application from agriculture, there aremanymore applications that this
could be applied to. Indeed, in many real-world applications, the natural model is an infinite-horizon formulation as
opposed to a finite-horizon formulation.

SUPPLEMENTARY MATER IALS
To facilitate the adoption of our algorithm, we provide an implementation in the open-source multistage stochastic
programming solver SDDP.jl (Dowson and Kapelevich, 2017). The online documentation for the solver (https://
odow.github.io/SDDP.jl/latest/index.html) contains a number of tutorials to help new users model and solve
multistage stochastic programming problems using SDDP.jl.
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