
Stochastic dual dynamic programming with stagewise-dependent objective uncertainty

Anthony Downwarda,∗, Oscar Dowsona,b, Regan Bauckea,c

aDepartment of Engineering Science, University of Auckland, New Zealand
bDepartment of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL

cCERMICS at Ecole des Ponts ParisTech, Champs-sur-Marne, France

Abstract

We present a new algorithm for solving linear multistage stochastic programming problems with objective function coefficients
modeled as a stochastic process. This algorithm overcomes the difficulties of existing methods which require discretization. Using
an argument based on the finiteness of the set of possible cuts, we prove that the algorithm converges almost surely. Finally, we
demonstrate the practical application of the algorithm on a hydro-bidding example with the spot-price modeled as an auto-regressive
process.

Keywords: stochastic programming, dynamic programming, decomposition, multistage, SDDP

1. Introduction

In this paper we consider a multistage stochastic programming
problem with stagewise dependent stochastic processes in both
the right-hand sides and the objective function coefficients of
the stage problem. Multistage convex stochastic programming
problems are typically solved using a variant of the SDDP al-
gorithm (stochastic dual dynamic programming) [1]. The sim-
plest implementation of this has stagewise independent stochas-
tic processes. The algorithm employs a forward pass, where
a sample path is generated from the stochastic process, and a
backward pass which refines the approximations of the future
cost functions along the sample path from the forward pass.

Stagewise dependent noise is typically modelled by creating
additional state variables to keep track of previous noise out-
comes. If the noise is on the right-hand sides of constraints,
this still results in a value function that is convex (with respect
to the state variables). (An alternative approach to expanding
the state-space is to use a noise-dependent term in the approxi-
mation of the value function [2].) However, if the noise is in the
objective, then additional state variables that keep track of this
noise will show up in the objective function of the next stage;
this leads to a concave value function with respect to these state
variables. As a result, the value function is a saddle function.
For this reason, standard cutting plane algorithms cannot give
valid lower bounds, precluding the modelling of stagewise de-
pendence within the objective coefficients.

Typically, this is partially overcome by modelling the depen-
dent process as a Markov chain with a set of discrete states
[3; 4; 5]. However, this method can become computationally

∗Corresponding author
Email address: a.downward@auckland.ac.nz (Anthony Downward)

1Private Bag 92019, Auckland, 1142, New Zealand

expensive since cutting plane lower bounds cannot be shared
and must be added for all of the discretized Markov states.
Moreover, if the process is multi-dimensional, the number of
Markov states required to give a sufficient level of accuracy be-
comes prohibitive. In stochastic dynamic programming (SDP),
a common approach to overcome this restriction is to use an in-
terpolation scheme to evaluate the value function at points in the
state space that are not in the discretized set. In the SDDP set-
ting, this corresponds to interpolating between the value func-
tions of different Markov states [6; 7].

The work of Baucke et al. [8] presents a new method for solv-
ing multistage minimax stochastic programming problems; this
work details a procedure for the generation of valid lower (and
upper) bound functions for a saddle function. Our method in-
corporates these bounding functions and is presented in a style
of a standard SDDP implementation, enabling the solution of
multistage stochastic programming problems with stagewise-
dependent uncertainty in the objective function.

This paper is laid out as follows. In Section 2 we provide a for-
mulation for our multistage stochastic program, and show that
the cost-to-go is a saddle function. Then in Section 3 we present
the method for generating valid lower representations for saddle
functions. In Section 4 we propose an algorithm to solve such
problems and provide a convergence proof. Next, in Section 5
we present an example with a discussion on the computational
performance of the algorithm. Finally in Section 6 we provide
concluding remarks.

2. Formulation

In this work, we consider multistage stochastic linear program-
ming problems with uncertainty in both the right-hand sides and
the objective function. We follow the terminology of Philpott

Preprint submitted to Operations Research Letters May 14, 2023

and Guan in [9], restricting our attention to multistage stochas-
tic programs with the following properties:

(1) The set of random noise outcomes Ωt in each stage t =

2, 3, . . . ,T is discrete and finite: Ωt = {1, . . . ,Nt}, with a
known probability pωt for each outcome ω ∈ Ωt.

(2) The random noise realizations in each stage are indepen-
dent of any previous realizations.

(3) The optimization problem in each stage has at least one
optimal solution for all reachable states.

Note that we also follow their convention of including the con-
trol variables in the state space for notational convenience (i.e.,
the state space is extended to incorporate both states and con-
trols). Moreover, we relax the assumption (A1) in [9], thereby
allowing random quantities to appear in any part of the op-
timization problem (not just the right-hand sides of the con-
straints).

Our optimization problem, henceforth SP, seeks a policy (this
is essentially a mapping from a state and noise outcome, at each
time period, to a control) that minimizes the expected cost over
the time horizon. In order to present this problem mathemat-
ically, we will define a scenario, s, to be a sequence of noise
outcomes for stages t ∈ {1, . . . ,T }, with the setZ containing all
such scenarios with positive probability. Moreover, for a given
scenario s ∈ Z, we denote the noise observation at the start of
stage t by ωs

t . Further, in order to ensure that the model is non-
anticipative, we define Ht to be the set of all possible distinct
noise realization sequences from stage 1 to stage t. Moreover,
we set H =

⋃T
t=1Ht. For each h ∈ H we define Zh ⊆ Z to be

the set of scenarios that start with noise realization sequence h.

SP : min
xt(s),x̂h

t

Es∈Z

[∑T
t=1 yt(s)>Qt xt(s)

]
subject to Aωs

t
t xt(s) + aω

s
t

t ≥ xt−1(s), ∀t ∈ {1, . . . ,T }, ∀s ∈ Z
xt(s) = x̂h

t , ∀t ∈ {1, . . . , |h|}, ∀s ∈ Zh, ∀h ∈ H ,

where xt(s) is a vector comprising the state of the system at the
end of stage t, as well as the control action made during the
stage, in scenario s, and x̂h

t is a variable used to enforce the
non-anticipativity constraint, ensuring that all scenarios with
the same sequence of noise realizations up to stage |h| have the
same state. For scenario s in stage t, the objective function co-
efficient vector yt(s) follows a stochastic process of the form:

yt(s) = Bω
s
t

t yt−1(s) + bω
s
t

t , ∀t ∈ {1, . . . ,T }, ∀s ∈ Z,

which is independent of our control actions. Note that Qt is a
matrix, Aωs

t
t and Bω

s
t

t are square matrices, and aω
s
t

t , bω
s
t

t are vec-
tors, which may vary with the stage t and scenario s. We also
have initial states x0(s) = x0, y0(s) = y0, and noise outcomes
ωs

1 = ω1, which are known and shared by all scenarios.

Typically SDDP would not be able to be applied to this type of
problem since the stochastic process {yt} applies to the objective
coefficients, which leads to a non-convex cost-to-go function.

Due to this, the stochastic process would usually be approxi-
mated by modelling it as a discrete Markov chain. SDDP could
be applied by generating separate cuts for each Markov state, at
each stage of the problem. We present an alternative approach
in this paper, which needs no such approximation.

SP can be decomposed (using a nested Benders approach) into
a series of stages, each written in the following form:

SPt : Vt (xt−1, yt−1, ωt) = min
xt

y>t Qt xt + . . .

. . .Eωt+1∈Ωt+1

[
Vt+1 (xt, yt, ωt+1)

]
subject to Aωt

t xt + aωt
t ≥ xt−1,

with
yt = Bωt

t yt−1 + bωt
t .

yt is a new type of state vector (an objective-state), which ap-
pears in the objective function, and evolves independently of
any control actions taken. This objective-state enables the mod-
elling of stagewise dependent objective uncertainty. On the
other hand, xt is a standard SDDP-type state/control vector ap-
pearing in the right-hand side of the constraints. Specifically,
xt−1 and yt−1 are vectors comprising the system state at the be-
ginning of period t, and ωt is the noise outcome observed prior
to taking any control action in period t.

Given initial states, x0 and y0, as well as the noise in stage 1, ω1,
we wish to find the optimal policy that minimizes the expected
total cost V1(x0, y0, ω1). Note that, in the final time period, we
assume (without loss of generality) that the cost-to-go is set to
0, i.e. VT+1(·, ·, ·) ≡ 0.

We define the expected cost-to-go function at the end of time
period t (prior to observing the noise in period t + 1) as:

Vt+1(xt, yt) = Eω∈Ωt+1

[
Vt+1 (xt, yt, ω)

]
. (1)

Unlike in standard SDDP decompositions, Vt+1(xt, yt) is not a
convex function. Specifically, the following lemma is presented
in order to show that Vt+1(xt, yt) is a saddle function that is
convex in xt and concave in yt, for all t ∈ {1, . . . ,T − 1}.

Lemma 1. For all t ∈ {1, . . . ,T }, the function Vt(xt−1, yt−1),
defined by equation (1) and the optimization problem SPt , is a
saddle function that is convex with respect to xt−1 and concave
with respect to yt−1.

Proof. We will prove this by induction. First suppose thatVt+1(xt, yt)
is a saddle function, which is convex in xt and concave in yt; we
know this is true for t = T , sinceVT+1(xT , yT) = 0.

Let us consider the convexity of Vt(xt−1, yt−1, ωt) with respect
to xt−1, for a fixed yt−1 and ωt. If yt−1 and ωt are fixed, so
too is yt; this reduces SPt to a convex optimization problem
with xt−1 appearing linearly on the right-hand side of the set
of constraints. Therefore, we know that Vt(xt−1, yt−1, ωt) is a
convex function of xt−1.

Now let us consider the concavity of Vt(xt−1, yt−1, ωt) with re-
spect to yt−1, for a fixed xt−1 and ωt. From the definition of SPt,

2

we have

Vt (xt−1, yt−1, ωt) = min
xt

(Bωt
t yt−1 + bωt

t)>Qt xt + . . .

. . .Vt+1(xt, B
ωt
t yt−1 + bωt

t)
subject to Aωt

t xt + aωt ≥ xt−1,

which has an objective function that is concave in yt−1. From
Theorem 5.5 of [10] we know that, since Vt(xt−1, yt−1, ωt) is the
pointwise minimum (keeping xt−1 and ωt, fixed) of a set of con-
cave functions, it is also concave in yt−1.

From the definition in (1) and using induction one can see that
Vt(xt−1, yt−1) is a saddle function, which is convex in xt−1 and
concave in yt−1, for t ∈ {1, . . . ,T } .

Lemma 1 gives the result that our cost-to-go function is a sad-
dle function. This is different from standard decompositions of
multistage stochastic programs, where the cost-to-go is convex,
allowing a lower bound function to be approximated by linear
cutting planes. Instead we need to approximate the expected
cost-to-go saddle function Vt+1(xt, yt) through lower bounding
functions, which we term saddle-cuts. These saddle-cuts were
first introduced in [8], in the context of stochastic minimax dy-
namic programs. In the next section we outline our implemen-
tation of these saddle-cuts to provide lower bound approxima-
tions for our cost-to-go saddle function.

3. Saddle function lower bounds

This section provides a derivation of the saddle-cuts of [8] for
our context. In particular, we will show how these cuts can be
implemented into an optimization problem to yield valid lower
bounds to a saddle function.

Consider a real-valued saddle function S(x, y) defined on the
convex and compact set X × Y; in particular, S(x, y) is convex
in x, and both concave and Lipschitz continuous in y. Moreover,
let us specifically assume that the L∞-norms of the supergradi-
ents of S(x, y), with respect to y, are bounded from above by
some Lipschitz constant ν.

Now consider a finite set of points P ⊂ X × Y, and suppose
that for each point (xp, yp) ∈ P there is some corresponding
saddle function Sp(x, y) defined over X×Y (which is also con-
vex in x and concave in y) such that Sp(x, y) ≤ S(x, y), for all
(x, y) ∈ X × Y. For each such saddle function Sp(x, y), we
sample one point (xp, yp), acquiring the value of this function,
θp = Sp(xp, yp), and a local subgradient vector of the function,
with respect to x, πp.

In order to construct a lower bound for S(x, y), let us define the
following optimization problem:

RP(x, y) = min
µ,ϕ

y>µ + ϕ

subject to y>pµ + ϕ ≥ θp + π>p (x − xp), ∀(xp, yp) ∈ P
||µ ||∞ ≤ ν.

(2)

Since RP(x, y) is the optimal value function of a linear program
(where x appears in the right-hand side of the constraints and
y is vector of objective coefficients), it is a piecewise saddle
function. Moreover, ν provides a bound on the supergradients
of RP(x, y) with respect to y. Theorem 1, below, gives the result
thatRP(x, y) is a lower bound forS(x, y) onX×Y. However, we
will first prove Lemma 2, which states that it is a lower bound
at each of the sample points.

Lemma 2. Sq(xq, yq) ≤ RP(xq, yq) ≤ S(xq, yq), for all (xq, yq) ∈
P, for any finite set of sample points P ⊂ X × Y.

Proof. By substituting any sample point (xq, yq) ∈ P into (2),
we know from the first constraint thatRP(xq, yq) ≥ θq = Sq(xq, yq),
ensuring that the problem is bounded. We will proceed to prove
that there exists a µ∗ yielding a feasible solution (µ, ϕ) = (µ∗,
S(xq, yq) − y>q µ

∗), with an objective function value of S(xq, yq).

Suppose we set µ∗ to be a supergradient of S(x, y) with respect
to y at (xq, yq). Our earlier assumption that the L∞-norm of the
supergradients of S(x, y) are less than or equal to ν ensures that
the second constraint of (2) is satisfied. Now since S(x, y) is
concave with respect to y, we know that:

(yp − yq)>µ∗ + S(xq, yq) ≥ S(xq, yp), ∀(xp, yp) ∈ P. (3)

Moreover, sinceSp(x, y) is convex with respect to x, θp = Sp(xp, yp),
and πp is a local subgradient, we know that:

Sp(xq, yp) ≥ θp + π>p (xq − xp), ∀(xp, yp) ∈ P. (4)

Since S(xq, yp) ≥ Sp(xq, yp), equations (3) and (4) give

(yp − yq)>µ∗ + S(xq, yp) ≥ θp + π>p (xq − xp), ∀(xp, yp) ∈ P,

which means that our solution (µ, ϕ) = (µ∗,S(xq, yq) − y>q µ
∗)

also satisfies the first constraint of (2), and therefore is feasible,
implying that RP(xq, yq) ≤ S(xq, yq).

Corollary 1. Suppose that some point (xq, yq) ∈ P corresponds
to a saddle function Sq(x, y) = S(x, y), for all (x, y) ∈ X × Y.
This implies that RP(xq, yq) = S(xq, yq).

Proof. From Lemma 2 above, we haveSq(xq, yq) ≤ RP(xq, yq) ≤
S(xq, yq). Therefore, if Sq(xq, yq) = S(xq, yq) this implies that
RP(xq, yq) = S(xq, yq).

Theorem 1. RP(x, y) ≤ S(x, y) for any finite set of sample
points P ⊂ X × Y, for all (x, y) ∈ X × Y.

Proof. For the sake of contradiction, suppose that there exists a
point (x̃, ỹ) ∈ X × Y for which RP(x̃, ỹ) > S(x̃, ỹ). By defining
P∗ = P∪ (x̃, ỹ), by Lemma 2, we have RP∗ (x̃, ỹ) ≤ S(x̃, ỹ). This
implies that RP∗ (x̃, ỹ) < RP(x̃, ỹ), which is a contradiction since
the feasible region of RP∗ is a subset of the feasible region of
RP, implying that RP∗ (x̃, ỹ) ≥ RP(x̃, ỹ). Thus RP(x, y) ≤ S(x, y)
for (x, y) ∈ X × Y, as required.

3

In order to apply this bounding function concept toVt+1(xt, yt),
defined in (1), first observe that the set X × Y can be defined
to be the convex hull of the set of reachable states (xt, yt) for
the given stage. Secondly, the value functions Vt+1(xt, yt) de-
fined in SPt, do indeed exhibit the property of bounded super-
gradients in yt required for the bounding function RP(x, y) to be
valid. This property arises from the following: SPt is always
feasible (admitting finitely bounded duals), cost coefficient ma-
trices are bounded and finite, and finally that there are a finite
number of stages. However, although the supergradients are
bounded, they may not be known. Given that Lemma 2 (and
hence Theorem 1) relies on ν exceeding the L∞-norm of the
largest supergradient, it is necessary to estimate this. In Section
5.2, we examine the trade-offs associated with the choice of ν,
computationally.

4. Proposed algorithm and convergence

Baucke et al. in [8] provide an ε-convergence result for their
algorithm which solves a more general class of problems, with
minimax saddle function stage problems. This requires the def-
inition of an upper bound function as well as a lower bound.
In our setting, since yt is exogenously determined we can forgo
the computation of an upper bound function (and hence forgo
deterministic convergence). Instead we prove the almost sure
convergence of a different algorithm. Moreover, the formula-
tion that we present here is more readily implementable in ex-
isting SDDP libraries (e.g. SDDP.jl [11]).

By Lemma 1, the cost-to-go function Vt+1 (xt, yt), defined in
equation (1), is convex with respect to xt, and concave with re-
spect to yt. Therefore, we can form a lower bound on the cost-
to-go using the saddle-cuts from Section 3. However, since we
have a stochastic program we form saddle-cuts for Vt+1 (xt, yt)
by taking an expectation with respect to the set of scenarios in
the next stage. Moreover, since we consider a multistage prob-
lem, the lower bound saddle-cuts in stage t will be formed based
on the approximate saddle function for stage t + 1. Saddle-cuts
are added in each iteration, continually improving the lower
bound. This concept extends naturally from SDDP, which uses
nested Benders cuts.

As with SDDP-type methods, we define an approximation of
problem SPt. In iteration k, this approximation, called APk

t ,
replaces the expected cost-to-go term with a set of saddle-cut
lower-bounds generated in iterations 1 through k − 1.

APk
t (xk

t−1, y
k
t−1, ωt):

θk
t (xk

t−1, y
k
t−1, ωt) = min

xt ,µt ,ϕt
yk>

t Qt xt + yk>
t µt + ϕt

subject to Aωt
t xt + aωt

t ≥ xk
t−1 [πk

t]

y j>
t µt + ϕt ≥ α

j
t+1 + β

j>
t+1xt,

j = 1, 2, . . . , k − 1 [ρ jk
t]

ϕt ≥ σ

||µt ||∞ ≤ ν,

where
yk

t = Bωt
t yk

t−1 + bωt
t .

α
j
t+1, β j

t+1 are parameters of the expected saddle-cut added in
iteration j, which are piecewise constant functions of x j

t (see
the description of Algorithm 1 for a precise definition); and πk

t ,
ρ

jk
t are dual vectors, corresponding to the first and second con-

straints, respectively. Recall that for a fixed ωt, θk
t (xk

t−1, y
k
t−1, ωt)

is a saddle function, and furthermore, in the final stage T the
cost-to-go is 0, so we can remove the µt and ϕt variables. Al-
gorithm 1 constructs saddle-cuts for APk

t that successively im-
prove the approximation of the true expected cost-to-go saddle
functions. In order to avoid an unbounded problems in iteration
1, the parameter σ provides a lower bound for ϕt, and must be
set to some sufficiently small value so that it gives a valid lower
bound for the expected cost-to-go.

In each iteration k ∈ {1, 2, . . . } of Algorithm 1, we select a sce-
nario sk ∈ Z, then we compute a trajectory of feasible solutions{
(xk

t , y
k
t) : t ∈ {1, . . . ,T − 1}

}
on each forward pass, and then

add a single saddle-cut (lower bound) for APk
t for each stage

t ∈ {1, . . . ,T − 1} on each backward pass.

A key distinction between our problem and ones that can be
solved using SDDP-type algorithms, as examined in [9], is that
due to the random noise affecting the objective function, in
order to construct a valid saddle-cut, every realization of the
next stage’s random noise must be sampled at each stage on
the backward pass. However, just as in SDDP-type algorithms,
a statistical estimate of an upper bound can be obtained by a
Monte Carlo simulation of the policy (see, e.g., [1]).

The description of Algorithm 1 details the specific procedure to
solve SP, for given starting states (x0, y0), and noise observation
ω1. In particular, we consider two variants of Algorithm 1, as
defined below.

(a) For all k ≥ 1 we set sk to be a repeating (ordered) infinite
sequence of all the scenarios inZ.

(b) For each k ≥ 1 we let sk be randomly and independently
sampled from the set of scenariosZ; note that the proba-
bility of selecting a particular scenario need not match its
true probability, however, it must be non-zero. This also
yields an infinite sequence of scenarios.

Since the first noise outcome is deterministic, for each scenario
s ∈ Z, ωs

1 = ω1 (all other outcomes in stage 1 have zero proba-
bility, so the corresponding scenarios are not inZ).

In what follows, we show that Algorithm 1(a) converges to an
optimal solution in a finite number of iterations, whereas Algo-
rithm 1(b) almost surely converges to an optimal solution in a
finite number of iterations. In order to prove this convergence
of the variants of Algorithm 1, we will first show that there
are only a finite number of possible saddle-cuts that can be
constructed. In order to prove this, we cannot directly invoke
Lemma 1 from [9], since we have different stage problems.
Therefore we present Lemma 3 below to show that the collec-
tion of distinct saddle-cuts, defined by parameters (yk

t , α
k
t+1, β

k
t+1),

is nevertheless provably finite. This Lemma follows the same

4

Algorithm 1: Stochastic dual dynamic programming with
objective-states

set ν to some constant known to exceed the Lipschitz
constants ofVt(xt−1, yt−1), ∀t ∈ {1, . . . ,T },

set σ to some constant known to be less than
Vt(xt−1, yt−1), ∀t ∈ {1, . . . ,T },

set k = 1
while not converged do

set xk
0 = x0, yk

0 = y0
/* Forward Pass */

for t = 1 : T − 1 do
solve APk

t (xk
t−1, y

k
t−1, ω

sk
t) (returning an extreme

point solution)
set xk

t to the value of xt in the optimal solution
end
/* Backward Pass */

for t = T − 1 : 1 do
for ω ∈ Ωt+1 do

solve APk
t+1(xk

t , y
k
t , ω) (returning an extreme

point dual solution)
set θk,ω

t+1 to the optimal objective value θk
t+1

set πk,ω
t+1 to the value of πk

t+1 in the optimal
dual solution

end
set βk

t+1 = Eω∈Ωt+1

[
πk,ω

t+1

]
set αk

t+1 = Eω∈Ωt+1

[
θk,ω

t+1

]
− βk>

t+1xk
t

add the saddle-cut yk>
t µt + ϕt ≥ α

k
t+1 + βk>

t+1xt to
APk

t
end
solve APk

1(x0, y0, ω1) to obtain θk
1 as a lower bound

increment k to k + 1
end

inductive reasoning as Lemma 1 of [9], with some of their re-
sults applied (without derivation) in our proof.

Lemma 3. In iteration k of Algorithm 1, for each t ∈ {1, 2, . . . ,
T − 1}, define the collection of saddle-cuts by the set

Gk
t =

{(
y j

t , α
j
t+1, β

j
t+1

)
: j = 1, 2, . . . , k − 1

}
.

Then for any sequenceGk
t , k ∈ {1, 2, . . .} generated by Algorithm

1, there exists mt such that for all k:
∣∣∣Gk

t

∣∣∣ ≤ mt. Furthermore,
there exists kt, so that if k ≥ kt then Gk

t = G
kt
t .

Proof. This lemma arises from the finite number of possible
realizations for the yt vector and the finite number of extreme
points of the feasible region in each stage problem. Since, in
the final stage, APk

T is a linear program with a finite number
of variables and constraints, by Assumption 1 the values of αT

and βT in the saddle-cuts for stage T − 1 will correspond to
an expectation over extreme points of the feasible region of the
dual problem; thus there will be a finite set of possible values.
Moreover, there is a finite number of values that yT−1 can take.
This gives a finite bound, mT−1, on the number of saddle-cuts,

i.e.
∣∣∣Gk

T−1

∣∣∣ ≤ mT−1. Due to there being a finite number of unique
saddle-cuts, there will exist some iteration kT−1 such that for
k ≥ kT−1, Gk

T−1 = G
kT−1
T−1; moreover, APkT−1

T−1 will also be a linear
program with a finite number of variables and constraints. This
can be applied inductively to give the result, in a similar way as
is presented in Lemma 1 of [9].

Using the result of Lemma 3 (that there are a finite number
of saddle-cuts possible at each stage) we will now show that
Algorithm 1(a) is convergent.

Lemma 4. Algorithm 1(a), converges after a finite number of
iterations to an optimal policy for SP.

Proof. By Lemma 3, for each t ∈ {2, . . . ,T }, there exists kt,
such that if k > kt then Gk

t = G
kt
t . This means that there will be

no further change in the cuts definingVt (xt−1, yt−1). We define
k̄ = maxt{kt}, to be the minimum number of iterations before
all stages of the model no longer change.

Observe that since the stochastic process for yt is discrete, there
are a finite number of possible values for yt for each t ∈ {2, . . . ,T }.
Moreover, since Gk

t is no longer changing for k > k̄, we arrive at
a fixed trajectory of states xt(s) for each scenario s. We define
the values of yt(s) in a similar way (however, these are explic-
itly determined from the random noise outcomes for scenario
s). We will now show that the states are optimal for the prob-
lem SPt for all stages and for each scenario.

First note that the optimal value function for APk̄
T is the same

as that for SPT ; this implies that

Eω∈ΩT

[
θk̄

T (xT−1(s), yT−1(s), ω)
]

= VT (xT−1(s), yT−1(s)) , ∀s ∈ Z.
(5)

We now use induction to prove that at iteration k̄ this is true for
all t ∈ {1, . . . ,T }. Suppose the analogous result to (5) is true for
stage t + 1, we will show that is it also true for stage t; that is:

Eω∈Ωt

[
θk̄

t (xt−1(s), yt−1(s), ω)
]

= Vt (xt−1(s), yt−1(s)) , ∀s ∈ Z.
(6)

We will prove this by contradiction. First, we note that by The-
orem 1 we are adding saddle-cuts that are guaranteed to not
exceed the true cost-to-go, so in order for (6) to not hold, there
must exist some scenario ŝ such that

θk̄
t

(
xt−1(ŝ), yt−1(ŝ), ωŝ

t

)
< Vt

(
xt−1(ŝ), yt−1(ŝ), ωŝ

t

)
.

However from Algorithm 1(a), we have

θk̄
t (xt−1(ŝ), yt−1(ŝ), ω̂) = min

xt ,µt ,ϕt
y>t Qxt + y>t µt + ϕt

subject to Aω̂
t xt + aω̂t ≥ xt−1(ŝ)

y j>
t µt + ϕt ≥ α

j
t+1 + β

j>
t+1xt

j = 1, 2, . . . , k̄ − 1
ϕt ≥ σ

||µt ||∞ ≤ ν,

5

where yt = Bω̂t yt−1(ŝ) + bω̂t , and for notational convenience we
set ω̂ = ωŝ

t . Furthermore, we denote the optimal solution by
(x∗t , µ

∗
t , ϕ

∗
t), where x∗t = xt(ŝ).

If y>t µ
∗
t + ϕ∗t < Vt+1(x∗t , yt), from Corollary 1 (given our cho-

sen value for ν) we know that this means that there exists some
random noise outcome, which we have not sampled in the back-
ward pass, since if we had sampled it then we would have added
a cut that would force y>t µ

∗
t + ϕ∗t = Vt+1(x∗t , yt). However,

this contradicts the backward pass of Algorithm 1(a), which
requires us to sample all random noise outcomes for the next
stage to generate the expected cut. Given this contradiction and
due to the enumeration of scenarios in the forward pass of Al-
gorithm 1(a), equation (6) must hold. Therefore, after a finite
number of iterations k̄, Algorithm 1(a) converges to the optimal
policy for SP.

Although we have shown that Algorithm 1(a) converges, it is
computationally intractable, since it enumerates all of the sce-
narios. In Theorem 2 we prove almost sure convergence of Al-
gorithm 1(b) in a finite number of iterations, but first we present
a short corollary.

Corollary 2. Suppose, in each stage t ∈ {1, . . . ,T − 1}, there
exists in AP1

t some initial (finite) set of saddle-cuts that form a
valid lower bound for the true cost-to-go function Vt+1(xt, yt).
Then Lemma 4 still holds if we begin Algorithm 1(a) from this
point.

Proof. Introducing these additional valid saddle-cuts to AP1
t

has no bearing on the application of Theorem 1 and Lemma
3 in the convergence proof of Lemma 4. Although the set of
saddle-cuts produced may be different, there are still a finite
number.

Theorem 2. Algorithm 1(b) converges with probability 1 to an
optimal policy for SP in a finite number of iterations.

Proof. Due to the forward pass sampling method given in Al-
gorithm 1(b), without the stopping criteria, we know, by the
second Borel-Cantelli lemma [12], that after some iterations we
would almost surely realize a finite sequence of iterations that is
identical to those traversed using Algorithm 1(a) until conver-
gence. This gives us an initial set of cuts before the iterations of
Algorithm 1(a), and thus from Corollary 2, we know that Algo-
rithm 1(b) will converge in a finite number of iterations to the
optimal policy for SP with probability 1.

5. Computational Experiments

We implement the hydro-bidding problem with price uncer-
tainty example from Chapter 6.1 of [7]. The example has two
reservoirs in a cascade over a planning horizon of 12 periods
(i.e. T = 12). On the outflow of each reservoir is a turbine fol-
lowed by a river that leads to the next reservoir in the cascade.
The last reservoir discharges into the sea. The goal of the agent

is to choose the quantity of water to flow through each turbine
(and thereby, produce electricity), as well as the quantity of wa-
ter to spill over the top of each reservoir, in order to maximize
the revenue gathered from selling the electricity generated on
the spot market. In each stage t, we denote the combination
of spills and flows as ut. We denote the feasibility constraints
on the action of the agent (i.e. maximum and minimum flow
limits) as ut ∈ U. Based on the action ut chosen by the agent,
the state of the system xt (the quantity of water in each of the
reservoirs at the start of stage t) will transition according to the
linear function xt = F(xt−1, ut). In addition, the agent earns an
immediate reward by selling G(ut) units of power at the cur-
rent spot-price yt. They may also incur a penalty of C(ut) if
they exceed some operating limits of the reservoir (i.e. a cost of
spillage). Unless explicitly stated, all parameters are identical
to the description given in [7].

5.1. First-order auto-regressive price process

We first consider a spot-price process yt which is modelled as
an auto-regressive lag 1 process: yt = 0.5yt−1 + 0.5b(t) + ωt,
where Ωt = {−4.5, −3.5, −2.5, −1.5, −0.5, 0.5, 1.5, 2.5, 3.5,
4.5}, and b(t) is a deterministic drift term of the auto-regressive
process as described in [7]. Each of the realizations ωt in Ωt is
sampled with uniform probability. This hydro-bidding model
can be described by the stage problem:

SPt : Vt (xt−1, yt−1, ωt) = min
ut ,xt

C(ut) − ytG(ut) + . . .

. . .Eωt+1∈Ωt+1

[
Vt+1 (xt, yt, ωt+1)

]
subject to xt = F(xt−1, ut)

ut ∈ U,

where yt = 0.5yt−1 + 0.5b(t) + ωt.

This model was implemented in the SDDP.jl package [11] in
the Julia language [13]. The model was solved using Algo-
rithm 1(b) for 2000 iterations. (In the style of DOASA [9], each
iteration of the algorithm adds one cut to each stage problem.)
Every 250 iterations, we performed a Monte Carlo simulation
of the policy with 250 replications in order to construct a con-
fidence interval for the expected value of the policy. A plot of
the lower and upper bounds against the number of iterations is
given in Figure 1. In addition, we solved the same model us-
ing the stochastic dynamic programming (SDP) algorithm (im-
plemented in the DynamicProgramming.jl package [14]). The
lower bound for the problem using Algorithm 1(b) converges
to the first-stage objective value (calculated using the SDP al-
gorithm) of −$24,855.

In this model there are two convex state variables (the quan-
tity of water in the upstream and downstream reservoirs), and
one concave objective-state variable. Thus, we can visualize
the cost-to-go function by fixing one of the three state vari-
ables, and varying the other two across their domain. Figure 2
is one such visualization for the cost-to-go function at the start
of stage 6 (i.e., V6), given 50 units of water in the upstream
reservoir and assuming that ω6 = 0. We can clearly see how the
cost-to-go function is convex with respect to the downstream
volume, and concave with respect to the spot-price.

6

0 500 1,000 1,500 2,000

−25.5

−25

−24.5

Iteration

L
ow

er
B
ou

n
d
($
’0
0
0
)

SDP solution

Alg. 1(b) lower bound
Monte Carlo upper bound

Figure 1: Convergence of the lower and upper bounds against the number of
iterations.

0
50

100
150

200
60

80

100

−4

−2

·104

Downstream volume (m3) Spot-price ($/MWh)

C
os
t-
to
-g
o
($
)

Figure 2: Visualization of the cost-to-go function at the start of stage 6.

5.2. Choice of Lipschitz constant

Recall that it is necessary to bound the µt variables in the ap-
proximate problems APt by some value ν, which we refer to as
the Lipschitz constant. If ν is chosen to be too small, then the
saddle cuts no longer form a valid lower bound approximation
of the cost-to-go function. However, if ν is made needlessly
large, then the bounds on the value functions are weakened,
hampering the speed of convergence. To ensure correctness in
the example above, we set a conservative value for the Lip-
schtiz constant of ν = 106. To demonstrate the behavior of
smaller choices for ν, in Figure 3 we plot the lower bound of
the two-reservoir problem against the number of iterations for
various values of ν. (Note the different number of iterations
in comparison to Figure 1.) When ν = 0 and ν = 10, the
problem converges to a sub-optimal solution. When ν = 100
and ν = 1000, the problem converges to the optimal solution,
and the convergence rate when ν = 1000 is slower than when
ν = 100. Choosing an appropriate value for ν in practice re-
quires domain knowledge. In addition, we recommend solving
each problem with different values of ν to see how this choice
affects the lower bound and solution time.

5.3. Second-order auto-regressive price process

In the simple example presented in Section 5.1, the SDP ap-
proach can be faster than Algorithm 1(b) (although it depends

0 100 200 300 400 500

−26

−25

−24

Iterations

L
ow

er
b
o
u
n
d
($
’0
0
0
)

ν = 0 ν = 10 ν = 100 ν = 1000

Figure 3: Convergence of the lower bound for the two-reservoir problem with
varying ν.

on the level of discretization of the state and action spaces).
However, it is well known that the SDP algorithm is limited
by the “curse of dimensionality”. To demonstrate the ability
of Algorithm 1(b) to escape the curse, we extend the model to
a cascade of five reservoirs, and the price process to an auto-
regressive process with lag 2: yt = 0.5yt−1 + 0.5(yt−1 − yt−2) +

0.5b(t) + ωt.

There are now seven state-dimensions in the model (the five
reservoir levels, plus the two prices yt−1 and yt−2), and five
action-dimensions (the quantity of water to release from each
reservoir). This problem is too large to solve in a reasonable
time using the SDP algorithm. However, the enlarged problem
was solved using Algorithm 1(b) for 5000 iterations to form
an approximately optimal policy. Then, a Monte-Carlo simu-
lation was conducted with 1000 replications using the policy.
This took approximately 2000 seconds using a single core of a
Windows 7 machine with an Intel i7-4770 CPU and 16GB of
memory. In Figure 4, we visualize the Monte-Carlo simulation.
In each of the subplots, we plot as shaded bands in order of
increasing darkness, the 0–100, 10–90, and 25–75 percentiles
of the distribution of the plotted variable. The solid line cor-
responds to the 50th percentile. There are also two individual
replications plotted: a high-price realization (thick dashed line)
and low-price realization (thick dotted line).

1 2 3 4 5 6 7 8 9 10 11 12
50

60

70

80

90
(a) Spot Price

Stage

Sp
ot

 P
ri

ce
($

/M
W

h)

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500
(b) Total Stored Energy

Stage

V
ol

um
e

(m
³)

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300
(c) Total Generation

Stage

E
ne

rg
y

(M
W

h)

110 115 120 125 130 135

(d) Distribution of Profit

Profit ($'000s)

Figure 4: Monte-Carlo simulation using the optimal policy.

7

Over the stages 1–7, the spot-price increases (Figure 4a). There-
fore, optimal policy is to conserve water in anticipation of a fu-
ture higher profit. In Figure 4b, we plot the total stored energy
in the system. (1m3 in Reservoir 1 is worth five units as it can
be used by each of the five turbines in the cascade. In contrast,
1m3 in Reservoir 5 is only worth one unit as it can only be used
once before it flows out of the cascade.) In the low-price sce-
nario (thick dotted line), more energy is stored in the system
at a given point in time in the expectation that the spot-price
will revert upwards to the mean, whereas in the high-price sce-
nario (thick dashed line), more energy is generated (Figure 4c)
in the early stages (i.e. stages 1-5) in anticipation that the fu-
tures prices will revert downwards to the mean. This leads to
the distribution in profit shown in Figure 4d.

6. Conclusions

In this paper we have presented an algorithm which converges
almost surely in a finite number of iteration when solving lin-
ear multistage stochastic programming problems with stage-
wise dependent noise in the objective function. This method en-
ables the modelling of stochastic price processes, such as pure
auto-regressive (AR) models or ones incorporating a moving
average (ARMA), within the SDDP framework. These types of
problems could previously only be approximated using Markov
chains [3], or binary expansion techniques [15].

We have presented an example of a five-reservoir cascading
river-chain with a lag 2 auto-regressive price process to show
that this method is computationally tractable for moderately-
sized problems (for which SDP models will run into the curse
of dimensionality). We see that the converged solution provides
a policy which is intuitive, yet complex, as the model is trading
off profits that can be made in the current period, against future
expected profits that could be made.

Furthermore, note that the algorithm is not limited to price pro-
cesses, and is general to any objective-state variable, so there
are many applications for this method. The key requirement
is that these state variables evolve independently of the control
decisions and the values of the other state variables.

This algorithm has been implemented within the SDDP.jl Julia
library [11]. We provide Julia code for Algorithm 1(b) as sup-
plementary material at https://github.com/odow/SDDP.jl.

Acknowledgements

The authors would like to acknowledge Prof. Andy Philpott
and Assoc. Prof. Andrew Mason for useful discussions on this
work, and thank the anonymous referees for their suggestions.

References
[1] M. V. F. Pereira, L. M. V. G. Pinto, Multi-stage stochastic optimization

applied to energy planning, Mathematical Programming 52 (1-3) (1991)
359–375. doi:10.1007/BF01582895.

[2] G. Infanger, D. P. Morton, Cut sharing for multistage stochastic linear pro-
grams with interstage dependency, Mathematical Programming 75 (1996)
241–256.

[3] A. Gjelsvik, M. Belsnes, A. Haugstad, An algorithm for stochastic
medium term hydro thermal scheduling under spot price uncertainty, in:
PSCC: 13th Power Systems Computation Conference : Proceedings, Ex-
ecutive Board of the 13th Power Systems Computation Conference, 1999,
Trondheim, 1999, p. 1328.

[4] A. B. Philpott, V. L. De Matos, Dynamic sampling algorithms for multi-
stage stochastic programs with risk aversion, European Journal of Opera-
tional Research 218 (2) (2012) 470–483. doi:10.1016/j.ejor.2011.
10.056.

[5] S. Rebennack, Combining sampling-based and scenario-based nested
Benders decomposition methods: application to stochastic dual dynamic
programming, Mathematical Programming 156 (1-2) (2016) 343–389.

[6] A. Gjelsvik, B. Mo, A. Haugstad, Long- and Medium-term Operations
Planning and Stochastic Modelling, in: P. M. Pardalos, S. Rebennack,
M. V. F. Pereira, N. A. Iliadis (Eds.), Handbook of Power Systems I,
Energy Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
pp. 33–55. doi:10.1007/978-3-642-02493-1.

[7] F. Wahid, River optimization: short-term hydro-bidding under uncer-
tainty, PhD thesis, University of Auckland, Auckland, New Zealand
(2017).

[8] R. Baucke, A. Downward, G. Zakeri, A deterministic algorithm for solv-
ing multistage stochastic minimax dynamic programmes, Optimization
Online.
URL http://www.optimization-online.org/DB_HTML/2018/

02/6449.html

[9] A. B. Philpott, Z. Guan, On the convergence of stochastic dual dynamic
programming and related methods, Operations Research Letters 36 (4)
(2008) 450–455. doi:10.1016/j.orl.2008.01.013.

[10] R. Rockafellar, Convex Analysis, Princeton University Press, Princeton,
New Jersey, 1992.

[11] O. Dowson, L. Kapelevich, SDDP.jl: a Julia package for Stochastic Dual
Dynamic Programming, Optimization Online.
URL http://www.optimization-online.org/DB_HTML/2017/

12/6388.html

[12] G. Grimmett, D. Stirzaker, Probability and Random Processes, Oxford
University Press, Oxford, 1992.

[13] J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A Fresh Ap-
proach to Numerical Computing, SIAM Review 59 (1) (2017) 65–98.

[14] O. Dowson, DynamicProgramming.jl: a Julia package for Stochastic Dy-
namic Programming, [Online; accessed 2017-10-26] (2017).
URL https://github.com/odow/DynamicProgramming.jl

[15] J. Zou, S. Ahmed, X. A. Sun, Stochastic dual dynamic integer program-
ming, Mathematical Programming 175 (1-2) (2019) 461–502.

8

https://github.com/odow/SDDP.jl
http://dx.doi.org/10.1007/BF01582895
http://dx.doi.org/10.1016/j.ejor.2011.10.056
http://dx.doi.org/10.1016/j.ejor.2011.10.056
http://dx.doi.org/10.1007/978-3-642-02493-1
http://www.optimization-online.org/DB_HTML/2018/02/6449.html
http://www.optimization-online.org/DB_HTML/2018/02/6449.html
http://www.optimization-online.org/DB_HTML/2018/02/6449.html
http://www.optimization-online.org/DB_HTML/2018/02/6449.html
http://dx.doi.org/10.1016/j.orl.2008.01.013
http://www.optimization-online.org/DB_HTML/2017/12/6388.html
http://www.optimization-online.org/DB_HTML/2017/12/6388.html
http://www.optimization-online.org/DB_HTML/2017/12/6388.html
http://www.optimization-online.org/DB_HTML/2017/12/6388.html
https://github.com/odow/DynamicProgramming.jl
https://github.com/odow/DynamicProgramming.jl
https://github.com/odow/DynamicProgramming.jl

	Introduction
	Formulation
	Saddle function lower bounds
	Proposed algorithm and convergence
	Computational Experiments
	First-order auto-regressive price process
	Choice of Lipschitz constant
	Second-order auto-regressive price process

	Conclusions

