
USING MULTIPRECISONARRAYS.JL:
ITERATIVE REFINEMENT IN JULIA

C. T. KELLEY∗

Abstract. MultiPrecisionArrays.jl is a Julia package. This package provides data structures and solvers for several variants
of iterative refinement. It will become much more useful when half precision (aka Float16) is fully supported in LAPACK/BLAS.
For now, its best general-purpose application is classical iterative refinement with double precision equations and single precision
factorizations.

It is useful as it stands for people doing research in iterative refinement. We provide a half precision LU factorization that,
while far from optimal, is much better than the default in Julia.

This document is for v0.0.9 of the package

Key words. Interative Refinement, Mixed-Precision Arithmetic, Interprecision Transfers, Julia

AMS subject classifications. 65F05, 65F10, 45B05, 45G10,

1. Introduction. The Julia [1] package MultiPrecisionArrays.jl [10] provides data structures and
algorithms for several variations of iterative refinement (IR). In this introductory section we look at the
classic version of iterative refinement and discuss its implementation and convergence properties.

IR is a perfect example of a storage/time tradeoff. To solve a linear system Ax = b in RN with IR,
one incurs the storage penalty of making a low precision copy of A and reaps the benefit of only having to
factor the low precision copy.

In most of this paper we consider IR using two precisions, which we will call high and low. In a typical
use case, high will be double and low will be single. We will make precision and inter precision transfers
explicit in our algorithmic descriptions. Following standard Julia type notation, we will let TH and TL be
the high and low precision types. So, for example� �

x = zeros(TH,N)� �
is a high precision vector of length N .

The first three sections of this paper use MultiPrecisionArrays.jl to generate tables which compare
the algorithmic options, but do not talk about using Julia.

Algorithm 1 is the textbook version [5] version of the algorithm for the LU factorization.

IR(A,b)

x = 0
r = b
Factor A = LU in low precision
while ∥r∥ too large do
d = U−1L−1r
x← x+ d
r = b−Ax

end while

One must be clear on the meanings of “factor in low precision” and d = U−1L−1r to implement the
algorithm. As we indicated above, the only way to factor A in low precision is to make a copy and factor that
copy. We must introduce some notation for that. We let Fp be the set of floating point numbers in precision
p, up the unit roundoff in that precision, and flp the rounding operator. Similarly we let FN

p , FN×N
p denote

the vectors and matrices in precision p. We let Iqp denote the copying operator from precision p to precision
q. When we are not explicitly specifying the precisions, we will use H and L as sub and superscripts for

∗North Carolina State University, Department of Mathematics, Box 8205, Raleigh, NC 27695-8205, USA
(Tim_Kelley@ncsu.edu). This work was partially supported by Department of Energy grant DE-NA003967.

1

high and low precision. When we are discussing specific use cases out sub and superscripts will the d, s, and
h for double, single, and half precision.

So, factoring a high-precision matrix A ∈ FN×N
H in low precision L means copy A into low precision

and obtain
AL = ILH(A)

and then factor AL = LU.
The current version of MultiPrecisionArrays.jl v0.0.9 requires that the type of A be ArrayTH,2

where TH is single or double. We will make this more general in a later version, but we will always require
that the Julia function lu! accept the type of A. In particular, this means that MultiPrecisionArrays.jl
will not accept sparse arrays. I’d like to fix this, but have no idea how to do it.

2. Integral Equations Example. The submodule MultiPrecisionArrays.Examples has an exam-
ple which we will use repeatedly. The function Gmat(N) returns the N point trapezoid rule discretization
of the Greens operator for −d2/dx2 on [0, 1]

Gu(x) =

∫ 1

0

g(x, y)u(y) dy

where

g(x, y) =

{
y(1− x); x > y
x(1− y); x ≤ y

The eigenvalues of G are 1/(n2π2) for n = 1, 2,
The code for this is in the /src/Examples directory. The file is Gmat.jl.
In the examples we will use Gmat to build a matrix A = I −αG. In the examples we will use α = 1.0,

a very well conditioned case, and α = 800.0. This latter case is very near singularity.
The GitHub repository for MultiPrecisionArrays.jl has a directory for the Julia functions we use to

make the tables and plots in this paper. That directory Codes_For_Docs is not a subdirectory of /src
because it is not part of the solvers and we do not do unit testing on the files in that directory.

2.1. Classic Example: Double-Single Precision. While MultiPrecisionArrays.jl was designed
for research, it is useful in applications in the classic case where high precision is double and low is single.
This case avoids the (very interesting) problems with half precision.

Here is a Julia code that implements IR in this case. We will use this as motivation for the data structures
in MultiPrecisionArrays.jl .� �

"""
IR(A,b)
Simple minded iterative refinement
Solve Ax=b
"""
function IR(A, b)

x = zeros(length(b))
r = copy(b)
tol = 10.0 * eps(Float64)
#
Allocate a single precision copy of A and factor in place
#
A32 = Float32.(A)
AF = lu!(A32)
#
Give IR at most ten iterations, which it should not need
in this case
#
itcount = 0
rnorm=norm(r)
rnormold = 2.0*rnorm
while (rnorm > tol * norm(b)) && (rnorm < .9 * rnormold)

#
Store r and d = AF\r in the same place.
#

2

ldiv!(AF, r)
x .+= r
r .= b - A * x
rnorm=norm(r)
itcount += 1

end
return x

end� �
2.2. Running MultiprecisionArrays: I. The function IR allocates memory for the low precision

matrix and the residual with each call. MultiPrecisionArrays.jl addresses that with the MPArray data
structure which allocates for the low precision copy of A and the residual r.

The most simple way to use this package is to combine the constrution of the MPArray with the factor-
ization of the low precision copy of A. One does this with the mplu command.

As an example we will solve the integral equation with both double precision LU and an MPArray
and compare execution time and the quality of the results. We will use the function @belapsed from the
BenchmarkTools.jl package to get timings.

We use lu! from Julia because then neither factorization will reallocate the space for the high precision
matrix. The excess cost for the allocation of the low precision matrix in mplu will show in the timings as
will the reduced cost for the factorization.

The problem setup is pretty simple� �
julia> using MultiPrecisionArrays

julia> using BenchmarkTools

julia> using MultiPrecisionArrays.Examples

julia> N=4096; G=Gmat(N); A=I - G; x=ones(N); b=A*x;

julia> @belapsed lu!(AC) setup=(AC=copy($A))
1.42840e-01

julia> @belapsed mplu($A)
8.60945e-02� �

At this point we have timed lu! and mplu. The single precision factorization is a bit more than half
the cost of the double precision one.

It is no surprise that the factorization in single precision took roughly half as long as the one in double.
In the double-single precision case, iterative refinement is a great expample of a time/storage tradeoff. You
have to store a low precision copy of , so the storage burden increases by 50% and the factoriztion time is cut
in half. The advantages of IR increase as the dimension increases. IR is less impressive for smaller problems
and can even be slower� �

julia> N=30; A=I + Gmat(N);

julia> @belapsed mplu($A)
4.19643e-06

julia> @belapsed lu!(AC) setup=(AC=copy($A))
3.70825e-06� �

Now for the solves. Both lu and mplu produce a Julia factorization object and \ works with both. You
have to be a bit careful because MPA and A share storage. So I will use lu instead of lu! when factoring A.� �

julia> AF=lu(A); xf = AF\b;

julia> MPAF=mplu!(MPA); xmp=MPAF\b;

julia> luError=norm(xf-x,Inf); MPError=norm(xmp-x,Inf);

3

julia> println(luError, " ", MPError)
7.41629e-14 8.88178e-16� �

So the relative errors are equally good. Now look at the residuals.� �
julia> luRes=norm(A*xf-b,Inf)/norm(b,Inf); MPRes=norm(A*xmp-b,Inf)/norm(b,Inf);

julia> println(luRes," ",MPRes)
7.40609e-14 1.33243e-15� �

So, for this well-conditioned problem, IR reduces the factorization cost by a factor of two and produces
results as good as LU on the double precision matrix. Even so, we should not forget the storage cost of the
single precision copy of A.

2.3. Harvesting Iteration Statistics: Part I. You can get some iteration statistics by using the
reporting keyword argument to the solvers. The easiest way to do this is with the backslash command.
When you use this option you get a data structure with the solution and the residual history.� �

julia> using MultiPrecisionArrays

julia> using MultiPrecisionArrays.Examples

julia> N=4096; A = I - Gmat(N); x=ones(N); b=A*x;

julia> MPF=mplu(A);

julia> # Use \ with reporting=true

julia> mpout=\(MPF, b; reporting=true);

julia> norm(b-A*mpout.sol, Inf)
1.33227e-15

julia> # Now look at the residual history

julia> mpout.rhist
5-element Vector{Float64}:
9.99878e-01
1.21892e-04
5.25805e-11
2.56462e-14
1.33227e-15� �

As you can see, IR does well for this problem. The package uses an initial iterate of x = 0 and so the
initial residual is simply r = b and the first entry in the residual history is ∥b∥∞. The iteration terminates
successfully after four matrix-vector products.

You may wonder why the residual after the first iteration was so much larger than single precision
roundoff. The reason is that the default when the low precision is single is to downcast the residual to single
before the solve (onthefly=false).

One can enable interprecision transfers on the fly and see the difference.� �
julia> MPF2=mplu(A; onthefly=true);

julia> mpout2=\(MPF2, b; reporting=true);

julia> mpout2.rhist
5-element Vector{Float64}:
9.99878e-01
6.17721e-07
3.84581e-13
7.99361e-15
8.88178e-16� �

4

So the second iteration is much better, but the iteration terminated after four iterations in both cases.
If we repeat the experiment using half precision as the low precision the solutions are equally good, but

the iteration is slower.� �
julia> MPF2=mplu(A; TL=Float16);

julia> # The TL keyword argument lets you make half the low precision.

julia> mpout2 = \(MPF2, b; reporting=true);

julia> norm(A*mpout2.sol - b,Inf)
6.66134e-16

julia> mpout2.rhist
9-element Vector{Float64}:
9.99878e-01
4.58739e-03
1.86362e-05
7.36240e-08
2.89855e-10
1.14420e-12
3.44169e-14
3.10862e-15
6.66134e-16� �

2.4. Options and data structures for mplu. Here is the source for mplu.� �
"""
mplu(A::AbstractArray{Float64,2}; TL=Float32, onthefly=false)

Combines the constructor of the multiprecision array with the
factorization.
"""
function mplu(A::AbstractArray{TH,2}; TL=Float32, onthefly=nothing) where TH <: Real
#
If the high precision matrix is single, the low precision must be half.
#
(TH == Float32) && (TL = Float16)
#
Unless you tell me otherwise, onthefly is true if low precision is half
and false if low precision is single.
#
(onthefly == nothing) && (onthefly = (TL==Float16))
MPA=MPArray(A; TL=TL, onthefly=onthefly)
MPF=mplu!(MPA)
return MPF
end� �

The function mplu has two keyword arguments. The easy one to understand is TL which is the precision
of the factoriztion. Julia has support for single (Float32) and half (Float16) precisions. If you set
TL=Float16 then low precision will be half. Don’t do that unless you know what you’re doing. Using half
precision is a fast way to get incorrect results. Look at § 3 for a bit more bad news.

The other keyword arguemnt is onthefly. That keyword controls how the triangular solvers from the
factorization work. When you solve

LUd = r

The LU factors are in low precision and the residual r is in high precision. If you let Julia and LAPACK
figure out what to do, then the solves will be done in high precision and the entries in the LU factors will
be comverted to high precision with each binary operation. The output d will be in high precision. This is
called interprecision transfer on-the-fly and onthefly = true will tell the solvers to do it that way. You
have N2 interprecsion transfers with each solve and, as we will see, that can have a non-trivial cost.

When low precision is Float32, then the default is onthefly = false. This converts r to low precision,
does the solve entirely in low precision, and then promotes d to high precision. You need to be careful to

5

avoid overflow and, more importantly, underflow when you do that and we scale r to be a unit vector before
conversion to low precisiion and reverse the scaling when we promote d. We take care of this for you.

mplu calls the constructor for the multiprecision array and then factors the low precision matrix. In
some cases, such as nonlinear solvers, you will want to separate the constructor and the factorization. When
you do that remember that mplu! overwrites the low precision copy of A with the factors. The factoriztion
object is different from the mulitprecision array, even though they share storage. Be careful with this.

2.5. Memory Allocations: I. The memory footprint of a multiprecision array is dominated by the
high precision array and the low precision copy. The allocations of� �

AF1=lu(A)� �
and � �

AF2=mplu(A)� �
are very different. Typically lu makes a high precision copy of A and factors that with lu!. mplu on the
other hand, uses A as the high precision matrix in the multiprecision array structure and the makes a low
precision copy to send to lu!. Hence mplu has half the allocation burden of lu.

That is, of course misleading. The best way to apply lu is to overwrite A with the factorization using� �
AF1=lu!(A).� �

The analog of this approach with a multiprecision array would be to first build an MPArray structure with� �
MPA = MPArray(A)� �

which makes A the high precision matrix and also makes a low precision copy. This is the stage where the
extra memory is allocated for the the low precision copy. One follows that with the factorization of the low
precision matrix to construct the factorization object.� �

MPF = mplu!(MPA).� �
The function mplu simply applies MPArray and follows that with mplu!.

Once you have used mplu to make a multiprecision factorization, you can reuse that storage for a
different matrix as long as the size and the precision are the same. For example, suppose� �

MPF = mplu(A)� �
is a multiprecision factorization of A. If you want to factor B and reuse the memory, then� �

MPF = mplu!(MPF,B)� �
will do the job.

3. Half Precision. Using half precision (Float16) will not speed up the solver, in fact it will make the
solver slower. The reason for this is that LAPACK and the BLAS do not (YET [4]) support half precision,
so all the clever stuff in there is missing. We provide a half precision LU factorization /src/Factorization-
s/hlu!.jl that is better than nothing. It’s a hack of Julia’s generic_lu! with threading and a couple
compiler directives. Even so, it’s 2 – 5 times slower than a double precision LU. Half precision support

6

is coming [4] and Julia and Apple support it in hardware. For now, at least for desktop computing, half
precision is for research in iterative refinement, not applications.

Here’s a table (created with /Code_For_Docs/HalfTime.jl) that illustrates the point. In the table
we compare timings for LAPACK’s LU to the LU we compute with hlu!.jl. The matrix is I−G.

Table 3.1
Half precision is slow: LU timings

N Double Single Half Ratio
1024 4.02e-03 3.24e-03 5.24e-03 1.31e+00
2048 2.27e-02 1.41e-02 3.72e-02 1.64e+00
4096 1.56e-01 8.52e-02 2.55e-01 1.63e+00
8192 1.15e+00 6.03e-01 4.36e+00 3.77e+00

The columns of the table are the dimension of the problem, timings for double, single, and half precision,
and the ratio of the half precision timings to double. The timings came from Julia 1.10-beta2 running on an
Apple M2 Pro with 8 performance cores.

Half precision is also difficult to use properly. The low precision can make iterative refinement fail
because the half precision factorization can have a large error. Here is an example to illustrate this point.
The matrix here is modestly ill-conditioned and you can see that in the error from a direct solve in double
precision.� �

julia> A=I - 800.0*G;

julia> x=ones(N);

julia> b=A*x;

julia> xd=A\b;

julia> norm(b-A*xd,Inf)
6.96332e-13

julia> norm(xd-x,Inf)
2.30371e-12� �

Now, if we downcast things to half precision, nothing good happens.� �
julia> AH=Float16.(A);

julia> AHF=hlu!(AH);

julia> z=AHF\b;

julia> norm(b-A*z,Inf)
6.25650e-01

julia> norm(z-xd,Inf)
2.34975e-01� �

So you get very poor, but unsurprising, results. While MultiPrecisionArrays.jl supports half precision
and I use it all the time, it is not something you would use in your own work without looking at the literature
and making certain you are prepared for strange results. Getting good results consistently from half precision
is an active research area.

So, it should not be a surprise that IR also struggles with half precision. We will illustrate this with one
simple example. In this example high precision will be single and low will be half. Using MPArray with a
single precision matrix will automatically make the low precision matrix half precision. In this example we
use the keyword argument “ ‘onthefly“ ‘ to toggle between MPS and LPS.� �

7

julia> N=4096; G=800.0*Gmat(N); A=I - Float32.(G);

julia> x=ones(Float32,N); b=A*x;

julia> MPF=mplu(A; onthefly=false);

julia> y=MPF\b;

julia> norm(b - A*y,Inf)
1.05272e+02� �

So, IR completely failed for this example. We will show how to extract the details of the iteration in a later
section.

It is also worthwhile to see if doing the triangular solves on-the-fly (MPS) helps.� �
julia> MPF2=mplu(A; onthefly=true);

julia> z=MPF2\b;

julia> norm(b-A*z,Inf)
1.28174e-03� �

So, MPS is better in the half precision case. Moreover, it is also less costly thanks to the limited support for
half precision computing. For that reason, MPS is the default when high precision is single.

However, on-the-fly solves are not enough to get good results and IR still terminates before converging
to the correct result.

4. Using the Low Precision Factorization as a Preconditioner. In this section we present some
options if IR fails to converge. This is very unlikely if high precision is double and low precision is single. If
low precision is half, the methods in this section might save you.

The idea is simple. Even if
MIR = I− Û−1L̂−1A

has norm larger than one, it could still be the case that

Û−1L̂−1A

is well conditioned and that

(4.1) P = Û−1L̂−1

could be a useful preconditioner for a Krylov method.

4.1. Direct Preconditioning. The obvious way to use P is simply to precondition the equation
Ax = p. In this case we prefer right preconditioning where we solve

APz = b

and then set x = Px. This is different from all IR methods we discuss in this paper and one may lose some
accuracy by avoiding the IR loop.

4.2. Krylov-IR. Krylov-IR methods solve the correction equation with a preconditioned Krylov it-
eration using the low precision solve as the preconditioner. Currently MultiPrecisionArrays.jl supports
GMRES [12] and BiCGSTAB [13].

4.3. GMRES-IR. GMRES-IR [2,3] solves the correction equation with a preconditioned GMRES [12]
iteration. One way to think of this is that the solve in the IR loop is an approximate solver for the correction
equation

Ad = r

8

where one replaces A with the low precision factors LU. In GMRES-IR one solves the correction equation
with a left-preconditioned GMRES iteration using P as the preconditioner. The preconditioned equation is

PAd = Pr.

The reason for using left preconditioning is that one is not interested in a small residual for the correction
equation, but in capturing d as well as possible. The IR loop is the part of the solve that seeks a small
residual norm.

GMRES-IR will not be as efficient as IR because each iteration is itself an GMRES iteration and
application of the preconditioned matrix-vector product has the same cost (solve + high precision matrix
vector product) as a single IR iteration. However, if low precision is half, this approach can recover the
residual norm one would get from a successful IR iteration.

There is also a storage problem. One should allocate storage for the Krylov basis vectors and other
vectors that GMRES needs internally. We do that in the factorization phase. So the structure MPGEFact
has the factorization of the low precision matrix, the residual, the Krylov basis and some other vectors
needed in the solve. The Julia function mpglu constructs the data structure and factors the low precision
copy of the matrix. The output, like that of mplu is a factorization object that you can use with backslash.

Here is a well conditioned example. Both IR and GMRES-IR perform well, with GMRES-IR taking
significantly more time. In these examples high precision is single and low precision is half.� �

julia> using MultiPrecisionArrays

julia> using MultiPrecisionArrays.Examples

julia> using BenchmarkTools

julia> N=4069; AD= I - Gmat(N); A=Float32.(AD); x=ones(Float32,N); b=A*x;

julia> # build two MPArrays and factor them for IR or GMRES-IR

julia> MPF=mplu(A); MPF2=mpglu(A);

julia> z=MPF\b; y=MPF2\b; println(norm(z-x,Inf)," ",norm(y-x,Inf))
5.9604645e-7 4.7683716e-7

julia> # and the relative residuals look good, too

julia> println(norm(b-A*z,Inf)/norm(b,Inf)," ",norm(b-A*y,Inf)/norm(b,Inf))
4.768957e-7 3.5767178e-7

julia> @btime $MPF\$b;
13.582 ms (4 allocations: 24.33 KiB)

julia> @btime $MPF2\$b;
40.028 ms (183 allocations: 90.55 KiB)� �

If you dig into the iteration statistics (more on that later) you will see that the GMRES-IR iteration
took almost exactly four times as many solves and residual computations as the simple IR solve.

We will repeat this experiment on the ill-conditioned example. In this example, as we saw earlier, IR
fails to converge.� �

julia> N=4069; AD= I - 800.0*Gmat(N); A=Float32.(AD); x=ones(Float32,N); b=A*x;

julia> MPF=mplu(A); MPF2=mpglu(A);

julia> z=MPF\b; y=MPF2\b; println(norm(z-x,Inf)," ",norm(y-x,Inf))
0.2875508 0.0044728518

julia> println(norm(b-A*z,Inf)/norm(b,Inf)," ",norm(b-A*y,Inf)/norm(b,Inf))
0.0012593127 1.4025759e-5� �

So, the relative error and relative residual norms for GMRES-IR are much smaller than for IR.
9

4.4. Memory Allocations: II. Much of the discussion from § 2.5 remains valid for the MGPArray
structure and the associated factorization structure MPGEFact. The only difference that matters is that
MGPArray contains the Krylov basis and a few other vectors that GMRES needs, so the allocation burden
is a little worse.

That aside, mpglu! works the same way that mplu! does when factoring or updatinh a MGPArray.

4.5. Harvesting Iteration Statistics: Part 2. The output for GMRES-IR contains the residual
history and a vector with the number of Krylov iterations for each IR step. The next example illustrates
that. � �

julia> MPGF=mpglu(A);

julia> moutg=\(MPGF, b; reporting=true);

julia> norm(A*moutg.sol-b, Inf)
1.44329e-15

julia> moutg.rhist
3-element Vector{Float64}:
9.99878e-01
7.48290e-14
1.44329e-15

julia> moutg.khist
2-element Vector{Int64}:
4
4� �

While only two IR iterations are needed for convergence, the Krylov history shows that each of those IR
iterations needed four GMRES iterations. Each of those GMRES iterations requires a matrix-vector product
and a low-precision on-the-fly linear solve. So GMRES-IR is more costly and, as pointed out in [2,3] is most
useful with IR does not converge on its own.

We will demonstrate this with one last example. In this example high precision is single and low precision
is half. As you will see, this example is very ill-conditioned.� �

julia> N=8102; AD = I - 799.0*Gmat(N); A=Float32.(AD); x=ones(Float32,N); b=A*x;

julia> cond(A, Inf)
2.34824e+05

julia> MPFH=mplu(A);

julia> mpouth=\(MPFH, b; reporting=true);

julia> # The iteration fails.

julia> mpouth.rhist
4-element Vector{Float64}:
9.88752e+01
9.49071e+00
2.37554e+00
4.80087e+00

julia> # Try again with GMRES-IR and mpglu

julia> MPGH=mpglu(A);

julia> mpoutg=\(MPGH, b; reporting=true);

julia> mpoutg.rhist
4-element Vector{Float32}:
9.88752e+01
1.86920e-03
1.29700e-03
2.46429e-03

julia> mpoutg.khist
3-element Vector{Int64}:

10

10
10
10� �

So GMRES-IR does much better. Note that we are taking ten GMRES iterations for each IR step. Ten
is the default. To increase this set the keyword argument basissize.

5. Details. In this section we discuss a few details that are important for understanding IR, but less
important for simply using MultiPrecisionArrays.jl .

5.1. Terminating the while loop. We terminate the loop when

(5.1) ∥r∥ < τ∥b∥

where we use τ = 10 ∗ eps(TH). Here eps(TH) is high precision machine epsilon. The problem with
this criterion is that IR can stagnate (see (5.15)) before the termination criterion is attained. We detect
stagnation by looking for a unacceptable decrease (or increase) in the residual norm. So we will terminate
the iteration if

(5.2) ∥rnew∥ ≥ .9∥rold∥

even if (5.1) is not satisfied.
In this paper we count iterations as residual computations. This means that the minimum number of

iterations will be two. Since we begin with x = 0 and r = b, the first iteration computes d = U−1L−1b and
then x← x+ d, so the first iteration is the output of a low precision solve. We will need at most one more
iteration to get a meaningful residual reduction.

5.2. Interprecision Transfers: Part I. The meaning of d = U−1L−1r is more subtle. The problem
is that the factors U and L are store in low precision and r is a high precision vector. LAPACK will convert
L and U to the higher precision “on the fly” with each mixed precision binary operation at a cost of O(N2)
interprecision transfers. The best way to understand this is to recall that if a, b ∈ FH and c ∈ FL that

flH(a ∗ c+ b) = flH(a+ IHL (c) + b).

As we will see this interprecision transfer can have a meaningful cost even though the factorization will
dominate with O(N3) work.

One can eliminate the cost by copying r into low precision, doing the triangular solves in low precision,
and then mapping the result into high precision. The two approaches are not the same. To see this we xc

denote the current iterate and x+ the new iterate.
If one does the solves on the fly then the IR iteration

x+ = xc + d = xc + Û−1L̂−1r

= xc + Û−1L̂−1(b−Axc)

= (I− Û−1L̂−1A)xc + Û−1L̂−1b

is a linear stationary iterative method. Hence on the fly IR will converge if the spectral radius of the iteration
matrix

MIR = I− Û−1L̂−1A

is less than one. We will refer to the on the fly approach as mixed precision solves (MPS) when we report
computational results in § A.

If one does the triangular solves in low precision, one must first take care to scale r to avoid underflow,
so one solves

(5.3) (LU)dL = ILH(r/∥r∥)
11

in low precision and then promotes d to high precision and reverses the scaling to obtain

(5.4) d = ∥r∥IHL (dL).

We will refer to this approach as low precision solves (LPS) when we report computational results in § A.
In practice, if low precision is single, the quality of the results is as good as one would get with MPS and
the solve phase is somewhat faster.

5.3. Convergence Theory.

5.3.1. Estimates for ∥MIR∥. We will estimate the norm of MIR to see how the factorization precision
affects the convergence. First write

(5.5) MIR = I− Û−1L̂−1A = Û−1L̂−1(L̂Û−A).

We split ∆A = (ÛL̂ − A) to separate the rounding error from the backward error in the low precision
factorization

∆A = (ÛL̂− ILHA) + (ILHA−A).

The last term can be estimated easily

(5.6) ∥ILHA−A∥ ≤ uL∥A∥.

To estimate the first term we look at the component-wise backward error [5]. If 3NuL < 1 then

(5.7) |L̂Û− ILHA| ≤ γ3N (uL)|L̂||Û|.

In (5.7) |B| is the matrix with entries the absolute values of those in B and

γk(u) =
ku

1− ku
.

We can combine (5.6) and (5.7) to get

(5.8)
∥MIR∥ ≤ uL∥A∥+ γk(uL)∥Û−1L̂−1∥∥L̂∥∥Û∥

= uL∥A∥+ γk(uL)κ(L̂)κ(Û).

The standard estimate in textbooks for ∥L̂∥∥Û∥ uses very pessimistic (and unrealistic) worst case bounds
on the right side of (5.7). In cases where the conditioning of the factors is harmless, the estimate in (5.8)
suggests that IR should converge well if low precision is single.

We will use the probabilistic bounds from [6] to explore this in more detail. Roughly speaking, with
high probability for desktop sized N ≤ 1010 problems we obtain

(5.9) |L̂Û− ILHA| ≤ (13uL

√
N +O(u2

L))∥L̂∥∥Û∥.

If we neglect the O(u2
L) term in (5.9), our estimate for M becomes

(5.10)
∥M∥ ≤ uL(∥A∥+ ∥Û−1L̂−1∥13

√
N∥L̂∥∥Û∥)

≤ ul(∥A∥+ 13
√
Nκ(L̂)κ(Û)).

So, ∥M∥ < 1 if
∥A∥+ 13

√
Nκ(L̂)κ(Û) < u−1

L .

For example if we assume that ∥A∥ = O(1), low precision is single (uL = us ≈ 1.2× 10−7), and we make a
fairly pessimistic assumption about the conditioning of the low precision factors,

κ(L̂)κ(Û) ≤
√
N,

12

then ∥M∥ < 1 if

(5.11) N < u−1
s /14 ≈ 6× 105

which is the case for most desktop sized problems. However, if low precision is half, then (5.11) becomes
with uL = uh ≈ 9.8× 10−3

(5.12) N < u−1
L /14 ≈ 73.

This is an indication that there are serious risks in using half precision if the conditioning of the low precision
factors increases with N , which could be the case if the A is a discretization of a boundary value problem.

5.3.2. Limiting Behavior of IR. In exact arithmetic one would get a reduction in the error with
each iteration of a factor of ρ(MIR) ≤ ∥MIR∥. However, when one accounts for the errors in the residual
computation, we will see how and when the iteration can stagnate. Our analysis will be a simplified version
of the one from [3] and we will neglect many of the details.

In this section we will consider dense matrices with solves with MPS, so the solves with the low precision
factors are done in high precision. Hence in exact arithmetic

x+ = xc +MIRxc + Û−1L̂−1b.

So the residual update is
r+ = b−Axc

= rc −AÛ−1L̂−1rc ≡MRESrc,

where
MRES = I−AÛ−1L̂−1. = Û−1L̂−1(L̂Û−A).

The analysis in the previous section implies that

∥MRES∥ ≤ α,

where

(5.13) α = uL(∥A∥+ 13
√
Nκ(L̂)κ(Û)).

One could also use ρ(MIR) for the convergence rate, but we think (5.13) is more illuminating.
As is standard, when one computes a residual r the computed value r̂ has an error [5]

r̂ = r+ δr

where
∥δr∥ ≤ γN (uH)(∥A∥∥x∥+ ∥b∥).

We will do the analysis in terms of reduction in the residual norm. We will then use that to estimate
the limiting behavior of the error norm. We will assume that α < 1 and that the IR iteration is bounded

∥x∥ ≤ C∥x∗∥

Hence

(5.14) ∥δr∥ ≤ ξ ≡ γN (uH)(C∥A∥∥x∗∥+ ∥b∥).

We will analyze the progress of IR while only considering the errors in the the residual computation. So
we compute

r̂+ = MRES r̂c + δrc

implying that
∥r+∥ ≤ α∥rc∥+ (1 + α)∥δrc∥ ≤ α∥rc∥+ (1 + α)ξ.

13

Hence, for any n ≥ 0

∥rn+1∥ ≤ α∥rn∥+
1 + α

1− α
ξ.

So, the iteration will stagnate when

(5.15) ∥r∥ ≈ 1 + α

1− α
ξ.

When we terminate the iteration when ∥r∥/∥b∥ is small we are ignoring the ∥A∥∥x∗∥ term in ξ, which one
reason we must take watch for stagnation in our solver.

Appendix A. Interprecision Transfers: Part II.
In [7,9,11] we advocated LPS interprecision with (5.3) rather than MPS. In this section we will look into

that more deeply. We will begin that investigation by comparing the cost of triangular solves with the two
approaches to interprecision transfer to the cost of a single precision LU factorization. Since the triangular
solvers are O(N2) work and the factorization is O(N3) work, the approach to interprecision transfer will
matter less as the dimension of the problem increases.

The test problem was Ax = b where the right side is A applied to the vector with 1 in each component.
In this way we can compute error norms exactly.

A.1. Double-Single IR. In Table A.1 we report timings from Julia’s BenchmarkTools package
for double precision matrix vector multiply (MV64), single precision LU factorization (LU32) and three
approaches for using the factors to solve a linear system. HPS is the time for a fully double precision
triangular solved and MPS and LPS are the mixed precision solve and the fully low precision solve using
(5.3) and (5.4). IR will use a high precision matrix vector multiply to compute the residual and a solve to
compute the correction for each iteration. The low precision factorization is done only once.

Table A.1
Timings for matrix-vector products and triangular solves vs factorizations: α = 800

N MV64 LU32 HPS MPS LPS LU32/MPS
512 4.2e-05 1.2e-03 5.0e-05 1.0e-04 2.8e-05 1.2e+01
1024 8.2e-05 3.2e-03 1.9e-04 4.3e-04 1.0e-04 7.3e+00
2048 6.0e-04 1.4e-02 8.9e-04 2.9e-03 4.0e-04 4.8e+00
4096 1.9e-03 8.4e-02 4.8e-03 1.4e-02 2.2e-03 5.8e+00
8192 6.8e-03 5.8e-01 1.9e-02 5.8e-02 9.8e-03 1.0e+01

The last column of the table is the ratio of timings for the low precision factorization and the mixed
precision solve. Keeping in mind that at least two solves will be needed in IR, the table shows that MPS can
be a significant fraction of the cost of the solve for smaller problems and that LPS is at least 4 times less
costly. This is a compelling case for using LPS in the case considered in this section, where high precision is
double and low precision is single, provided the performance of IR is equally good.

If one is solving Ax = b for multiple right hand sides, as one would do for nonlinear equations in many
cases [9], then LPS is significantly faster for small and moderately large problems. For example, for N = 4096
the cost of MPS is roughly 15% of the low precision LU factorization, so if one does more than 6 solves with
the same factorization, the solve cost would be more than the factorization cost. LPS is five times faster
and we saw this effect while preparing [9] and we use that in our nonlinear solver package [8]. The situation
for IR is similar, but one must consider the cost of the high precision matrix-vector multiply, which is about
the same as LPS.

We make LPS the default for IR if high precision is double and low precision is single. This decision is
good for desktop computing. If low precision is half, then the LPS vs MPS decision is different since the
factorization in half precision is so expensive.

Finally we mention a subtle programming issue. We made Table A.1 with the standard commands for
matrix-vector multiply (A ∗ x), factoriztion lu, and used \ for the solve. Julia also offers non-allocating
versions of these functions. In Table A.2 we show how using those commands changes the results. We used
mul! for matrix-vector multiply, lu! for the factorization, and ldiv! for the solve.

14

Table A.2
Timings for non-allocating matrix-vector products and triangular solves vs factorizations: α = 800

N MV64 LU32 HPS MPS LPS LU32/MPS
512 3.6e-05 9.1e-04 5.0e-05 4.8e-05 2.8e-05 1.9e+01
1024 9.0e-05 2.7e-03 1.9e-04 1.8e-04 1.0e-04 1.5e+01
2048 6.2e-04 1.3e-02 8.9e-04 7.3e-04 3.9e-04 1.8e+01
4096 2.2e-03 8.0e-02 4.8e-03 3.3e-03 2.3e-03 2.4e+01
8192 6.5e-03 5.7e-01 2.1e-02 1.5e-02 1.0e-02 3.9e+01

So, while LPS still may make sense for small problems if high precision is double and low precision is
single, the case for using it is weaker if one uses non-allocating matrix-vector multiplies and solves. We do
that in MulitPrecisionArrays.jl.

A.2. Accuracy of MPS vs LPS. Since MPS does the triangular solves in high precision, one should
expect that the results will be more accurate and that the improved accuracy might enable the IR loop to
terminate earlier [3]. We should be able to see that by timing the IR loop after computing the factorization.
One should also verify that the residual norms are equally good.

We will conclude this section with two final tables for the results of IR. We compare the well conditioned
case (α = 1) and the ill-conditioned case (α = 800) for a few values of N . We will look at residual and error
norms for both approaches to interprecision transfer. The conclusion is that if high precision is double and
low is single, the two approaches give equally good results.

The columns of the tables are the dimensions, the ℓ∞ relative error norms for both LP and MP inter-
precision transfers (ELP and EMP) and the corresponding relative residual norms (RLP and RMP).

The results for α = 1 took 5 IR iterations for all cases. As expected the LPS iteration was faster than
MPS. However, for the ill-conditioned α = 800 case, MPS took one fewer iteration (5 vs 6) than EPS for all
but the smallest problem. Even so, the overall solve times were essentially the same.

Table A.3
Error and Residual norms: α = 1

N ELP EMP RLP RMP TLP TMP
512 4.4e-16 5.6e-16 3.9e-16 3.9e-16 3.1e-04 3.9e-04
1024 6.7e-16 4.4e-16 3.9e-16 3.9e-16 1.1e-03 1.5e-03
2048 5.6e-16 4.4e-16 3.9e-16 3.9e-16 5.4e-03 6.2e-03
4096 1.1e-15 1.1e-15 7.9e-16 7.9e-16 1.9e-02 2.5e-02
8192 8.9e-16 6.7e-16 7.9e-16 5.9e-16 6.9e-02 9.3e-02

Table A.4
Error and Residual norms: α = 800

N ELP EMP RLP RMP TLP TMP
512 6.3e-13 6.2e-13 2.1e-15 1.8e-15 3.0e-04 3.8e-04
1024 9.6e-13 1.1e-12 3.4e-15 4.8e-15 1.4e-03 1.5e-03
2048 1.0e-12 1.2e-12 5.1e-15 4.5e-15 6.5e-03 7.1e-03
4096 2.1e-12 2.1e-12 6.6e-15 7.5e-15 2.6e-02 2.4e-02
8192 3.3e-12 3.2e-12 9.0e-15 1.0e-14 9.1e-02 8.7e-02

REFERENCES

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM
Review, 59 (2017), pp. 65–98.

15

[2] E. Carson and N. J. Higham, A new analysis of iterative refinement and its application of accurate solution of
ill-conditioned sparse linear systems, SIAM Journal on Scientific Computing, 39 (2017), pp. A2834–A2856, https:
//doi.org/10.1137/17M112291.

[3] E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative refinement in three precisions,
SIAM Journal on Scientific Computing, 40 (2018), pp. A817–A847, https://doi.org/10.1137/17M1140819.

[4] J. Demmel, M. Gates, G. Henry, X. Li, J. Riedy, and P. Tang, A proposal for a next-generation BLAS, 2017.
preprint.

[5] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1996, http://www.ma.man.ac.uk/~higham/asna.html.

[6] N. J. Higham and T. Mary, A new approach to probabilistic rounding error analysis, SIAM J. Sci. Comput., 1 (2019),
pp. A2815–A2835.

[7] C. T. Kelley, Newton’s method in mixed precision, SIAM Review, 64 (2022), pp. 191–211, https://doi.org/10.1137/
20M1342902.

[8] C. T. Kelley, SIAMFANLEquations.jl, 2022, https://doi.org/10.5281/zenodo.4284807, https://github.com/ctkelley/
SIAMFANLEquations.jl. Julia Package.

[9] C. T. Kelley, Solving Nonlinear Equations with Iterative Methods: Solvers and Examples in Julia, no. 20 in Funda-
mentals of Algorithms, SIAM, Philadelphia, 2022.

[10] C. T. Kelley, MultiPrecisionArrays.jl, 2023, https://doi.org/10.5281/zenodo.7521427, https://github.com/ctkelley/
MultiPrecisionArrays.jl. Julia Package.

[11] C. T. Kelley, Newton’s method in three precisions, 2023, https://arxiv.org/abs/2307.16051.
[12] Y. Saad and M. Schultz, GMRES a generalized minimal residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856–869.
[13] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant to Bi-CG for the solution of nonsymmetric

systems, 13 (1992), pp. 631–644.

16

https://doi.org/10.1137/17M112291
https://doi.org/10.1137/17M112291
https://doi.org/10.1137/17M1140819
http://www.ma.man.ac.uk/~higham/asna.html
https://doi.org/10.1137/20M1342902
https://doi.org/10.1137/20M1342902
https://doi.org/10.5281/zenodo.4284807
https://github.com/ctkelley/SIAMFANLEquations.jl
https://github.com/ctkelley/SIAMFANLEquations.jl
https://doi.org/10.5281/zenodo.7521427
https://github.com/ctkelley/MultiPrecisionArrays.jl
https://github.com/ctkelley/MultiPrecisionArrays.jl
https://arxiv.org/abs/2307.16051

	Introduction
	Integral Equations Example
	Classic Example: Double-Single Precision
	Running MultiprecisionArrays: I
	Harvesting Iteration Statistics: Part I
	Options and data structures for mplu
	Memory Allocations: I

	Half Precision
	Using the Low Precision Factorization as a Preconditioner
	Direct Preconditioning
	Krylov-IR
	GMRES-IR
	Memory Allocations: II
	Harvesting Iteration Statistics: Part 2

	Details
	Terminating the while loop
	Interprecision Transfers: Part I
	Convergence Theory
	Estimates for MIR
	Limiting Behavior of IR

	Appendix A. Interprecision Transfers: Part II
	Double-Single IR
	Accuracy of MPS vs LPS

	References

