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LTwo Precision Iterative Refinement

IR from textbooks

r=>b— Ax
Factor A = LU in low precision
while ||r|| too large do
d=U"tL"r
X< x+d
r=>b— Ax
end while

Not clear what “factor in low precision” and d = U~L~!r mean
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LTwo Precision Iterative Refinement

LInterprecision transfers and IR

Interprecision transfers

m This is mostly a two-precision talk.

m F = set of floats, u = unit roundoff, f/ rounding operator
m FN, FNXN yectors and matrices

m High (working and residual) precision = FP64, F,, up, fly
m Low (factorization precision) = FP32 or FP16, F;, u;, fl,
m /! interprecision transfer from source s to target t
]

We will explicitly put the interprecision transfers in the
algorithms.
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LTwo Precision Iterative Refinement

LInterprecision transfers and IR

Interprecision transfer is more than rounding

m Memory allocation
m Data movement

m This matters even within registers because
u; € Fy, a, b € Fp implies
] f/h(U/ * a -+ b) = f/h(//h(U/) * a-+ b) SO
m Promotion happens before binary operations.
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LTwo Precision Iterative Refinement

LCost of interprecision transfer

Consider the triangular solve.

Begin with A € ]-",I,VXN, be .FAV
m HPF: Factor A = LU
m LPF: Factor l,ﬁ(A) =A=LU
m Three triangular solves
m HPS: (LU)"!b
m LPS: (L/U/)ill/,(b)
m MPS: (L/U/)_lb
Don't forget fly(us * a+ b) = fls(I/(u)) * a + b)

C. T. Kelley Precision Transfers 7/30



Precision Transfers
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LCc:ost of interprecision transfer

Julia 1.9.0, OpenBLAS, A = rand(N, N)

Timings, 2023 Mac Mini; M2 Pro; Double-Single
N HPF LPF HPS MPS LPS
512 1.05e-03  9.77e-04 5.03e-05 1.00e-04 2.83e-05
1024 3.96e-03  2.98e-03 1.88e-04 4.31e-04 1.02e-04
2048 2.36e-02  1.46e-02 8.96e-04 3.70e-03 4.07e-04
4096 1.57e-01  8.61e-02 4.81e-03 1.47e-02 2.27e-03
8192 1.24e+00 6.13e-01 1.95e-02 5.88e-02 9.86e-03

Difference (MPS/LPS) a factor of 3-9. Performance problem in

(CTK22B).

MPS is even more costly than high precision triangular solves.

This is not an issue in Matlab.
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LTwo Precision Iterative Refinement

LCc:ost of interprecision transfer

MPS vs LPS in IR

m Julia and LAPACK do MPS

m will promote with each binary operation in MPS.
m This is the pain point in the triangular solves.

m Fix for IR: Avoid d = (L,U;)~1r and use LPS

Scale and move r to the lower precision.
Do the solves and move back.

Remove the scaling.

Soit's d = [|r[ 1/ ((LUr)~H(r/IIr])))

m Matlab does //(r) for you, so LPS is automatic.

m Most of you use LPS.
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LConsequem:es for IR

IR with LPS: explicit interprecision transfers

r=>b— Ax

Factor I/(A) = A, = LU,

while ||r|| too large do
(LPS) d = I llA((LU) e/ 1)
X< x+d
r=>b— Ax

end while
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LTwo Precision Iterative Refinement

LConsequem:es for IR

IR-LPS as a fixed point iteration

x  G(x) = x+ [[r| 1P (LU) L/

where r = b — Ax.
G is not only nonlinear, it is not even continuous.
This makes IR a pain to analyze, but is a pedantic worry.
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LTwo Precision Iterative Refinement

LConsequem:es for IR

IR with LPS

If all the scaling does is avoid underflow, then

G(x) =~ x + (LU) " tr 46,
So it's almost the same as IR-MPS. Difference is

0 = (LU — vl e/ lIrlD))

and |6 [| < w | (LU)HIr]-
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LConsequem:es for IR

Classic (H96 + refs) Estimates for MPS

IR-MPS is a stationary iterative method
x < x4+ U, b — AX)
with iteration matrix

M=1-U", A= U, (LU, - A)
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LTwo Precision Iterative Refinement

LConsequem:es for IR
What is AA=A — L,U,?

The classic estimates ignore the interprecision transfers to get

|AA] < vlLi|U)]

(see eq 7.1 of CH18)
But A; is missing. Put it in to get

A=A +A - LU <|A=A[+]A - LU

|AA| =
< u|Al + vV

uyA| is not likely to matter much, but it is there.
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LTwo Precision Iterative Refinement

LConsequem:es for IR

Estimate ||M]|

Ml

IN

UL AA]
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LTwo Precision Iterative Refinement

LConsequem:es for IR

Effect on estimates in CH18

To get the convergence results from Section 7 in the case

m Factor in low precision
m do everything else in high

If
1 = ul| U7 I HICIAT + LUl << 1

then the bottom line from CH18 does not change.
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LConsequem:es for IR

Using U, 1L, 7! as a preconditioner

We just found that
U LA < 1+ 6
Also
IATTLU < T+[ATH[AA]
< 1+ [ATHIUAL + LAY =1+ ¢2

So Ii(U/_lL/_lA) < (14 ¢1)(1 + ¢2).
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LTwo Precision Iterative Refinement

LConsequem:es for IR

Solving in high precision for preconditioning (CH)

m LPS won't do the job.

m Must one return to MPS: U,‘lLl_lr?
Yes, but you can reformulate and trade storage for time.
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LConsequem:es for IR

Remember the assumption: true for Intel and Apple Mx

CPU

Assumption: If
m x; is low precision,
m a and b are high precision

then computing x; * a + b returns
fla(1 (1) * a+ b)
So the low precision number is promoted before the operations

begin.
Not true for the Apple Accelerator Framework on Mx chips.
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LTwo Precision Iterative Refinement

LCo:onsequem:es for IR
Heavy IR: |

m Factor I,’yA = A; = LUy in low precision

m Promote the factors to high precision to get
L=1/(L) and U = 11(U))
m solve the correction equation in high precision via
d=(LO)~r

with the promoted factors
m This is equivalent to MPS. Look at the loops to see.
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LConsequem:es for IR

Heavy IR: Il. New(?) version of MPS

r=b— Ax
Factor IAA to obtain L; and U,
Promote the factors to obtain L and U.
while ||r|| too large do

d=(LO)1r

X<+ x+d

r=>b— Ax
end while
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LTwo Precision Iterative Refinement

LCo:onsequem:es for IR

Why do this?

m Bad
m A = LU costs the same as A to store, so the storage burden is
heavy
m Triangular solves are in high precision
m Good
m Faster to do MPS this way for GMRES-IR.
Avoid interprecision transfers within the iteration.
m Makes half precision experiments on desktops less painful
eg: Use factorization for several nonlinear iterations
m Can reuse space for A; for Krylov vectors ...
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LNorm and condition estimates: model problem

Simple model problem

Composite midpoint discretization of

1
(Au)(x) = u(x) — a /0 g(x.y)uly) dy = F(x)

where g is the discretization of the Greens function for the negative
Laplacian with homogeneous Dirichlet boundary conditions.

(1-x) ifx>
e ={ 3073 2

A is self-adjoint and positive definite if a < 7.
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LNorm and condition estimates: model problem

Experiments with o = 800

m A is singular if & = 9?72 ~ 799.4
and hence ill-conditioned for oo = 800
m For u, = FP64 and u; = FP32 and FP16 we tabulate

m Norm of iteration matrix | — A—1A

= Norm of A=1(A — A)) to see if it matters
m Condition number of A=1A
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LNorm and condition estimates: model problem

u = FP32, u, = FP64, oo = 800

N R(A)  IATHA-AD2 [I1=AT'All (AT'A)
2048 1.1le+05  7.45e-05 139¢-03  1.00e+00
4006 1.13e+05  581e-05 0.95e-03  1.01e+00
8192 1.14e+05  3.90e-05 3.17¢-03  1.00e+00
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LNorm and condition estimates: model problem

uy = FP16, u, = FP64, oo = 800

N R(A)  IATHA-AD2 [I1=AT'All (AT'A)
2048 1.1le+05  8.19e-03 127e+00  134e+02
4006 1.13e+05  2.65¢-03 151e+00  3.89e+02
8102 1.14e+05  2.89e-03 3.02¢400  154e+03
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LNorm and condition estimates: model problem

m A1(A—A)) is negligible
and was in every other experiment we did
m Conditioning for u; = FP16 looks bad.
m GMRES-IR does well anyway if you

m make the GMRES tolerance very tight (107°) and
m allocate lots of room for Krylov vectors

m There are many problem eigenvalues and they need many
GMRES iterations.

m We tried scaling A and got no change in the results.
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L Half Precision is Slow, but getting faster

Half precision is slow, but getting better

LU timings: 8192x8192 Random

CPU Double Single Half T16/T64
A 1.37e400 6.07e-01 3.92e4-02 287
B 1.10e+00 5.94e-01 1.16e+402 106
C 1.17e4+00 6.10e-01 6.46e+01 55

A: 2019 8 core Intel iMac, Julia 1.8.5
B: 2023 M2 Pro, Julia 1.8.5
C: 2023 M2 Pro, Julia 1.9.1
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L Half Precision is Slow, but getting faster

BLAS and LAPACK not there, but ...

m Julia 1.9.1 using 8 threads

m 2023 M2 Pro, 8 performance cores

m Brute force AT x B matrix multiply. N=8000.
Timings in seconds Tgq =26 T3 =10 Ti6 =45
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L Half Precision is Slow, but getting faster

Summary

m Interprecision transfers are costly.
m Avoid on-the-fly transfers by synchronizing precision before
matrix operations
m You knew this already.
m Some consequences

m Heavy IR
m Heavy GMRES-IR
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