
Precision Transfers 1 / 30

Interprecision Transfers in Iterative Refinement
Making Half Precision on Desktops Less Painful

C. T. Kelley
NC State University

tim_kelley@ncsu.edu
Supported by DOE, NSF

XSDK-MULTIPRECISION, June 15, 2023

C. T. Kelley Precision Transfers 1 / 30

Precision Transfers 2 / 30

Outline

1 References

2 Two Precision Iterative Refinement
Interprecision transfers and IR
Cost of interprecision transfer
Consequences for IR

3 Norm and condition estimates: model problem

4 Half Precision is Slow, but getting faster

C. T. Kelley Precision Transfers 2 / 30

Precision Transfers 3 / 30

References

References

CH18: E. Carson and N. J. Higham, Accelerating the solution of linear
systems by iterative refinement in three precisions, SIAM Journal on
Scientific Computing, 40 (2018), pp. A817–A847.

H96: N. J. Higham, Accuracy and Stability of Numerical Algorithms,
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
1996.

HPZ19: N. J. Higham, S. Pranesh, and M. Zounon, Squeezing a matrix
into half precision, with an application to solving linear systems, SIAM J.
Sci. Comp., 41 (2019), pp. A2536–A2551.

CTK22P: C. T. Kelley, Newton’s method in mixed precision, SIAM
Review, 64 (2022), pp. 191–211.

CTK22B: C. T. Kelley,
Solving Nonlinear Equations with Iterative Methods:
Solvers and Examples in Julia, no. 20 in Fundamentals of Algorithms,
SIAM, Philadelphia, 2022.

C. T. Kelley Precision Transfers 3 / 30

Precision Transfers 4 / 30

Two Precision Iterative Refinement

IR from textbooks

r = b− Ax
Factor A = LU in low precision
while ∥r∥ too large do

d = U−1L−1r
x← x + d
r = b− Ax

end while
Not clear what “factor in low precision” and d = U−1L−1r mean

C. T. Kelley Precision Transfers 4 / 30

Precision Transfers 5 / 30

Two Precision Iterative Refinement

Interprecision transfers and IR

Interprecision transfers

This is mostly a two-precision talk.
F = set of floats, u = unit roundoff, fl rounding operator
FN , FN×N vectors and matrices
High (working and residual) precision = FP64, Fh, uh, flh
Low (factorization precision) = FP32 or FP16, Fl , ul , fll
I ts interprecision transfer from source s to target t
We will explicitly put the interprecision transfers in the
algorithms.

C. T. Kelley Precision Transfers 5 / 30

Precision Transfers 6 / 30

Two Precision Iterative Refinement

Interprecision transfers and IR

Interprecision transfer is more than rounding

Memory allocation
Data movement
This matters even within registers because
ul ∈ Fl , a, b ∈ Fh implies

flh(ul ∗ a+ b) = flh(I
h
l (ul) ∗ a+ b) so

Promotion happens before binary operations.

C. T. Kelley Precision Transfers 6 / 30

Precision Transfers 7 / 30

Two Precision Iterative Refinement

Cost of interprecision transfer

Consider the triangular solve.

Begin with A ∈ FN×N
h , b ∈ FN

h

HPF: Factor A = LU
LPF: Factor I lh(A) = Al = LlUl

Three triangular solves
HPS: (LU)−1b
LPS: (LlUl)

−1I lh(b)
MPS: (LlUl)

−1b
Don’t forget flh(ul ∗ a+ b) = flh(I

h
l (ul) ∗ a+ b)

C. T. Kelley Precision Transfers 7 / 30

Precision Transfers 8 / 30

Two Precision Iterative Refinement

Cost of interprecision transfer

Julia 1.9.0, OpenBLAS, A = rand(N ,N)

Timings, 2023 Mac Mini; M2 Pro; Double-Single
N HPF LPF HPS MPS LPS
512 1.05e-03 9.77e-04 5.03e-05 1.00e-04 2.83e-05
1024 3.96e-03 2.98e-03 1.88e-04 4.31e-04 1.02e-04
2048 2.36e-02 1.46e-02 8.96e-04 3.70e-03 4.07e-04
4096 1.57e-01 8.61e-02 4.81e-03 1.47e-02 2.27e-03
8192 1.24e+00 6.13e-01 1.95e-02 5.88e-02 9.86e-03

Difference (MPS/LPS) a factor of 3–9. Performance problem in
(CTK22B).
MPS is even more costly than high precision triangular solves.
This is not an issue in Matlab.

C. T. Kelley Precision Transfers 8 / 30

Precision Transfers 9 / 30

Two Precision Iterative Refinement

Cost of interprecision transfer

MPS vs LPS in IR

Julia and LAPACK do MPS
will promote with each binary operation in MPS.
This is the pain point in the triangular solves.

Fix for IR: Avoid d = (LlUl)
−1r and use LPS

Scale and move r to the lower precision.
Do the solves and move back.
Remove the scaling.
So it’s d = ∥r∥I hl ((LlUl)

−1I lh(r/∥r∥))
Matlab does I rh (r) for you, so LPS is automatic.
Most of you use LPS.

C. T. Kelley Precision Transfers 9 / 30

Precision Transfers 10 / 30

Two Precision Iterative Refinement

Consequences for IR

IR with LPS: explicit interprecision transfers

r = b− Ax
Factor I lh(A) = Al = LlUl

while ∥r∥ too large do
(LPS) d = ∥r∥I hl ((LlUl)

−1I lh(r/∥r∥))
x← x + d
r = b− Ax

end while

C. T. Kelley Precision Transfers 10 / 30

Precision Transfers 11 / 30

Two Precision Iterative Refinement

Consequences for IR

IR-LPS as a fixed point iteration

x← G(x) ≡ x + ∥r∥I hl (LlUl)
−1I lh(r/∥r∥)

where r = b− Ax.
G is not only nonlinear, it is not even continuous.
This makes IR a pain to analyze, but is a pedantic worry.

C. T. Kelley Precision Transfers 11 / 30

Precision Transfers 12 / 30

Two Precision Iterative Refinement

Consequences for IR

IR with LPS

If all the scaling does is avoid underflow, then

G(x) ≈ x + (LlUl)
−1r + δr

So it’s almost the same as IR-MPS. Difference is

δr = (LlUl)
−1(r − ∥r∥I lh(r/∥r∥))

and ∥δr∥ ≤ ul∥(LlUl)
−1∥∥r∥.

C. T. Kelley Precision Transfers 12 / 30

Precision Transfers 13 / 30

Two Precision Iterative Refinement

Consequences for IR

Classic (H96 + refs) Estimates for MPS

IR-MPS is a stationary iterative method

x← x + Ul
−1Ll−1(b− Ax)

with iteration matrix

M = I− Ul
−1Ll−1A = Ul

−1Ll−1(LlUl − A)

C. T. Kelley Precision Transfers 13 / 30

Precision Transfers 14 / 30

Two Precision Iterative Refinement

Consequences for IR

What is ∆A = A− LlUl?

The classic estimates ignore the interprecision transfers to get

|∆A| ≤ γ l3N |Ll ||Ul |

(see eq 7.1 of CH18)
But Al is missing. Put it in to get

|∆A| = |A− Al + Al − LlUl | ≤ |A− Al |+ |Al − LlUl |
≤ ul |A|+ γ l3N |Ll ||Ul |

ul |A| is not likely to matter much, but it is there.

C. T. Kelley Precision Transfers 14 / 30

Precision Transfers 15 / 30

Two Precision Iterative Refinement

Consequences for IR

Estimate ∥M∥

∥M∥ ≤ ∥ |Ul
−1| |Ll−1| |∆A| ∥

≤ ul(∥|Ul
−1||Ll−1||A|∥+ 3N∥|Ul

−1| |Ll−1| |Ll | |Ul |∥)

≤ ul∥U−1
l ∥∥L

−1
l ∥(∥A∥+ ∥Ll∥∥Ul∥)

C. T. Kelley Precision Transfers 15 / 30

Precision Transfers 16 / 30

Two Precision Iterative Refinement

Consequences for IR

Effect on estimates in CH18

To get the convergence results from Section 7 in the case
Factor in low precision
do everything else in high

If
ϕ1 ≡ ul∥U−1

l ∥∥L
−1
l ∥(∥A∥+ ∥Ll∥∥Ul∥) << 1

then the bottom line from CH18 does not change.

C. T. Kelley Precision Transfers 16 / 30

Precision Transfers 17 / 30

Two Precision Iterative Refinement

Consequences for IR

Using Ul
−1Ll

−1 as a preconditioner

We just found that

∥Ul
−1Ll−1A∥ ≤ 1 + ϕ1

Also

∥A−1LlUl∥ ≤ 1 + ∥A−1∥∥∆A∥

≤ 1 + ∥A−1∥(∥A∥+ ∥Ll∥∥Ul∥) ≡ 1 + ϕ2

So κ(Ul
−1Ll−1A) ≤ (1 + ϕ1)(1 + ϕ2).

C. T. Kelley Precision Transfers 17 / 30

Precision Transfers 18 / 30

Two Precision Iterative Refinement

Consequences for IR

Solving in high precision for preconditioning (CH)

LPS won’t do the job.
Must one return to MPS: U−1

l L−1
l r?

Yes, but you can reformulate and trade storage for time.

C. T. Kelley Precision Transfers 18 / 30

Precision Transfers 19 / 30

Two Precision Iterative Refinement

Consequences for IR

Remember the assumption: true for Intel and Apple Mx
CPU

Assumption: If
xl is low precision,
a and b are high precision

then computing xl ∗ a+ b returns

flh(I
h
l (xl) ∗ a+ b)

So the low precision number is promoted before the operations
begin.
Not true for the Apple Accelerator Framework on Mx chips.

C. T. Kelley Precision Transfers 19 / 30

Precision Transfers 20 / 30

Two Precision Iterative Refinement

Consequences for IR

Heavy IR: I

Factor I lhA = Al = LlUl in low precision
Promote the factors to high precision to get

L̂ = I hl (Ll) and Û = I hl (Ul)

solve the correction equation in high precision via

d = (L̂Û)−1r

with the promoted factors
This is equivalent to MPS. Look at the loops to see.

C. T. Kelley Precision Transfers 20 / 30

Precision Transfers 21 / 30

Two Precision Iterative Refinement

Consequences for IR

Heavy IR: II. New(?) version of MPS

r = b− Ax
Factor I lhA to obtain Ll and Ul

Promote the factors to obtain L̂ and Û.
while ∥r∥ too large do

d = (L̂Û)−1r
x← x + d
r = b− Ax

end while

C. T. Kelley Precision Transfers 21 / 30

Precision Transfers 22 / 30

Two Precision Iterative Refinement

Consequences for IR

Why do this?

Bad
Â = L̂Û costs the same as A to store, so the storage burden is
heavy
Triangular solves are in high precision

Good
Faster to do MPS this way for GMRES-IR.
Avoid interprecision transfers within the iteration.
Makes half precision experiments on desktops less painful
eg: Use factorization for several nonlinear iterations
Can reuse space for Al for Krylov vectors . . .

C. T. Kelley Precision Transfers 22 / 30

Precision Transfers 23 / 30

Norm and condition estimates: model problem

Simple model problem

Composite midpoint discretization of

(Au)(x) ≡ u(x)− α

∫ 1

0
g(x , y)u(y) dy = f (x)

where g is the discretization of the Greens function for the negative
Laplacian with homogeneous Dirichlet boundary conditions.

g(x , y) =

{
y(1− x) if x > y
x(1− y) if y ≥ x

A is self-adjoint and positive definite if α < π2.

C. T. Kelley Precision Transfers 23 / 30

Precision Transfers 24 / 30

Norm and condition estimates: model problem

Experiments with α = 800

A is singular if α = 92π2 ≈ 799.4
and hence ill-conditioned for α = 800
For uh = FP64 and ul = FP32 and FP16 we tabulate

Norm of iteration matrix I− Â−1A
Norm of Â−1(A− Al) to see if it matters
Condition number of Â−1A

C. T. Kelley Precision Transfers 24 / 30

Precision Transfers 25 / 30

Norm and condition estimates: model problem

ul = FP32, uh = FP64, α = 800

N κ(A) ∥Â−1(A− Al)∥2 ∥I− Â−1A∥2 κ(Â−1A)
2048 1.11e+05 7.45e-05 1.39e-03 1.00e+00
4096 1.13e+05 5.81e-05 9.95e-03 1.01e+00
8192 1.14e+05 3.90e-05 3.17e-03 1.00e+00

C. T. Kelley Precision Transfers 25 / 30

Precision Transfers 26 / 30

Norm and condition estimates: model problem

ul = FP16, uh = FP64, α = 800

N κ(A) ∥Â−1(A− Al)∥2 ∥I− Â−1A∥2 κ(Â−1A)
2048 1.11e+05 8.19e-03 1.27e+00 1.34e+02
4096 1.13e+05 2.65e-03 1.51e+00 3.89e+02
8192 1.14e+05 2.89e-03 3.92e+00 1.54e+03

C. T. Kelley Precision Transfers 26 / 30

Precision Transfers 27 / 30

Norm and condition estimates: model problem

And so . . .

Â−1(A− Al) is negligible
and was in every other experiment we did
Conditioning for ul = FP16 looks bad.

GMRES-IR does well anyway if you
make the GMRES tolerance very tight (10−6) and
allocate lots of room for Krylov vectors

There are many problem eigenvalues and they need many
GMRES iterations.

We tried scaling A and got no change in the results.

C. T. Kelley Precision Transfers 27 / 30

Precision Transfers 28 / 30

Half Precision is Slow, but getting faster

Half precision is slow, but getting better

LU timings: 8192x8192 Random
CPU Double Single Half T16/T64

A 1.37e+00 6.07e-01 3.92e+02 287
B 1.10e+00 5.94e-01 1.16e+02 106
C 1.17e+00 6.10e-01 6.46e+01 55

A: 2019 8 core Intel iMac, Julia 1.8.5
B: 2023 M2 Pro, Julia 1.8.5
C: 2023 M2 Pro, Julia 1.9.1

C. T. Kelley Precision Transfers 28 / 30

Precision Transfers 29 / 30

Half Precision is Slow, but getting faster

BLAS and LAPACK not there, but . . .

Julia 1.9.1 using 8 threads
2023 M2 Pro, 8 performance cores
Brute force AT ∗ B matrix multiply. N=8000.

Timings in seconds T64 = 26 T32 = 10 T16 = 4.5

C. T. Kelley Precision Transfers 29 / 30

Precision Transfers 30 / 30

Half Precision is Slow, but getting faster

Summary

Interprecision transfers are costly.
Avoid on-the-fly transfers by synchronizing precision before
matrix operations
You knew this already.

Some consequences
Heavy IR
Heavy GMRES-IR

C. T. Kelley Precision Transfers 30 / 30

	References
	Two Precision Iterative Refinement
	Interprecision transfers and IR
	Cost of interprecision transfer
	Consequences for IR

	Norm and condition estimates: model problem
	Half Precision is Slow, but getting faster

