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Abstract

In this MSc. thesis, we present a numerical framework in Julia for solving problems in the emerging field
of Waveguide Quantum Electrodynamics (WQED). The framework is based on collision quantum optics,
where a localized quantum system interacts with a collection of time-bins one at a time. This physically
intuitive picture enables researchers familiar with QUTiP in Python, QuantumToolbox in Matlab, or Quan-
tumOptics.jl in Julia to set up waveguide QED simulations with relative ease. Despite the conceptually
simple picture, we demonstrate that the framework is capable of tackling complex Waveguide QED prob-
lems. These include the scattering of one or two-photon pulses on emitters or cavities, internal coupling
between waveguides leading to the prediction of Fano resonances, and also non-Markovian systems where
emitted light is reflected back and leads to feedback mechanisms.

Note that this framework is a contribution to the community in the form of a well-documented open-source
project through the package "WaveguideQED.jl" in Julia. During the development, various contributions
were also made to the "QuantumOptics.jl" package in Julia, which are now merged into the main library
through the pull request: https://github.com/qojulia/QuantumOpticsBase.jl/pull/86.
Documentation of the code can be found here: https://qojulia.github.io/WaveguideQED.jl/dev/.

https://github.com/qojulia/QuantumOpticsBase.jl/pull/86
https://qojulia.github.io/WaveguideQED.jl/dev/
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Chapter 1

Introduction

The ability to manipulate and control quantum states of light is vital in many quantum technology applica-
tions. Such applications include quantum cryptography and communication, where photons carry quantum
information over long distances. But also quantum computing, where the light either mediates quantum
information between localized qubits or computation is performed on the quantum state of light itself. An
essential ingredient in manipulating such quantum states of light is the ability to make photons interact with
each other. In the ultimate limit of quantum pulses containing one, two, or a few photons, the combination
of low optical power and weak non-linearities in bulk materials has proven a significant challenge in achieving
high-fidelity interactions [1].

However, recent progress in the design and fabrication of nanostructures holds promise for efficient interaction
with photons. Optical waveguides allow for guiding and manipulation of photons with the possibility for
on-chip scalability [2]. By integrating a localized emitter in the waveguide, the light-matter interaction can
mediate photon-photon interactions leading to optical non-linearities [1]. Indeed, an efficient light-matter
interface in a photonic crystal waveguide with a semiconductor quantum dot has been demonstrated [3].
Optical nonlinearities can also be enhanced further by optical cavities. For example, extreme confinement
of light in dielectric cavities allows for unprecedented strong light-matter interactions [4, 5, 6, 7] and is a
possible source of optical nonlinearities that are sensitive to single quanta of light. The Jaynes-Cummings
model here aptly describes the interaction between the localized optical mode and quantum emitter [8], but
the state of the emitted traveling photon is not described. When interfacing photons in waveguides, the
state of the traveling photon, however, becomes relevant [9]

Naturally, describing propagating states of light interacting with cavities or emitters has thus recently re-
ceived a lot of attention, and the field of Waveguide Quantum ElectroDynamics (WQED) is an exciting new
area of physics. The theory of traveling quantum states of light is inherently a rich and complex many-body
problem. Much effort has been put into developing master equations [10] or input-output theory (SLH)
[11, 12, 13, 14] that correctly predict the interaction of wavepackets with cavity-emitter systems. In these
descriptions, the complete state of the traveling wavepacket is not described, and treating non-markovian
effects, such as delayed feedback, is hard and requires substantial additions to the calculations. To treat
such problems, matrix product states can be used to describe the complete state of the waveguide in an
efficient way [15, 16]. Matrix product states are, however, complex and offer little physical insight into
the system. Therefore, instead, more simple and intuitive space-discretized waveguide models have been
proposed [17, 18].

In this master thesis, we take a similar approach to the space-discretized waveguide models, where we
use a quantum collision model [19] to describe the traveling wavepacket as a collection of time-bins in-
teracting with the quantum system one at a time [20, 21, 22]. We will present this model as a numer-
ical framework that is conceptually simple and easy to use for researchers familiar with quantum optics
simulation softwares such as QuTiP in python [23, 24], Quantum Toolbox in Matlab, and QuantumOp-
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tics.jl in Julia [25]. Code and documentation of our numerical framework WaveguideQED.jl is available at:
https://github.com/qojulia/WaveguideQED.jl

Using the framework, we investigate the scattering of single and two-photon pulses on cavities and emitters
coupled to single and multiple channels. We also allow for direct interactions between the waveguide channels
and show how this affects the emission rate and frequency due to a change in the Local Density of Optical
states. Such coupling is not conventionally included in other discretized waveguide models, and we here
discuss the difficulties in doing so. Finally, we also show that our framework is capable of modeling non-
Markovian dynamics arising from delayed feedback with little added complexity. As an example, we consider
a semi-infinite waveguide with a mirror in one end leading to a feedback loop and, for some conditions,
excitation trapping.
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Chapter 2

Waveguide Quantum Electrodynamics

Photons are not just particles but also propagating waves. It is, however, very convenient to think of photons
as just particles occupying states in the harmonic oscillator when describing interactions between photons
and emitter systems such as atoms, quantum dots, or NV centers. Such a description is also sufficient
when you deal with cavity quantum electrodynamics, where photons occupy localized cavity modes, and
the Jaynes-Cummings model describes the interaction. The wave-like nature of the photon then enters the
picture through the light-matter coupling given by the overlap between the local density of states and the
dipole moment of the emitter [26]. If the photon, however, is propagating in, e.g., a waveguide, such a
simplification can no longer be made since the photon occupies a continuum of modes. It is now relevant to
know "when" the photon arrives or, equivalently, which frequencies it contains. In this chapter, we introduce
the theory of traveling quantum states of light using the photon time binning method of continuous fock
states [20].

Figure 2.1: Schematic of a photonic crystal waveguide containing an L1 cavity (one missing hole) interacting
with an incoming (blue) pulse producing a scattered (red) pulse.

2.1 Continuous Fock States

We can describe the traveling quantum pulse as occupying a collection of bosonic modes. As an example, a
traveling single photon can be defined as [19]:

|ψ⟩ =
∫

dνψ(ν)w†(ν)|∅⟩, (2.1)

where w†(ν) is the creation operator for a photon of frequency ν with units of
√
time and ψ(ν) defines the

wavefunction of the pulse also with units of
√
time. The field operators w(ν) and w†(ν) obey the commutator
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Master’s Thesis 2.1. Continuous Fock States

relations:
[
w(ν), w†(ν′)

]
= δ(ν − ν′), [w(ν), w(ν′)] = 0, and

[
w†(ν), w†(ν′)

]
= 0. The free evolution of the

pulse is given by the Hamiltonian:

Hf = h̄

∫
dννw†(ν)w(ν) (2.2)

If we consider some cavity or emitter system with annihilation and creation operators a and a† (note that a
two-level system is equivalent to a cavity with a cutoff of one photon and a more appropriate symbol would
here be σ), the interactionHint with the pulse is, under the assumption of the Rotating Wave Approximation,
given as [19]:

Hint = h̄

∫
dν
(
g(ν)a†w(ν) + g(ν)∗aw†(ν)

)
(2.3)

where g(ν) defines the coupling strength with each individual mode in the pulse. If we transform into an
interaction picture with respect to Hf we get (see appendix A.1):

eiHf t/h̄Hinte
−iHf t/h̄ = Hint(t) = h̄

∫
dν
(
g(ν)a†w(ν)eiνt + g(ν)∗aw†(ν)e−iνt

)
(2.4)

Assuming that the interaction g(ν) is spectrally flat g(ν) = i
√
γ/2π, we can make a considerable simplifica-

tion of the above interaction by introducing the Fourier transformed field operator: w(t) = 1√
2π

∫
dνw(ν)e−iνt

with units of 1/
√
time. Note that the imaginary part in the coupling g(ν) is just one definition and that it

is equally valid to define it as g(ν) =
√
γ/2π. Inserting g(ν) = i

√
γ/2π, we get:

Hint(t) = h̄i
√
γ(a†w(t)− aw†(t)) (2.5)

The implication of the above simplification is clear: the interaction is now only with a single (time) mode
w(t) at each time t. The single photon state can equivalently be defined as:

|ψ⟩ =W †[ξ] |∅⟩ =
∫ tend

t0

dt ξ(1)(t)w†(t) |∅⟩ (2.6)

here W †(ξ) creates a photon with the wavefunction ξ(1)(t) and by insertion we can show that ξ(1)(t) =
1√
2π

∫
dνψ(ν)e−iνt. Here, w†(t) is the creation operator for a photon at time t. The inner product

⟨ψ|w†(t)w(t) |ψ⟩ = |ξ(1)(t)|2 with units of inverse time thus gives the flux of photons at time t and multiplied
with a small timestep ∆t|ξ(1)(t)|2 the probability of observing a photon at time t.
We can take this picture of only interacting with a single mode at a time further and discretize the continuous
fock state into time bins of width ∆t. This amounts to defining new discretized annihilation and creation
operators as [20] (see also appendix A.1):

w(tk) = w(k∆t) → wk√
∆t

with
[
wj , w

†
k

]
= δjk (2.7)

where wk is the descritized (unitless) operator of the kth timebin and the factor of 1/
√
∆t assures the

commutator relation in the limit of ∆t → 0. This means that the single photon continuous fock state
becomes:

|ψ⟩ =
∫ tend

t0

dt ξ(1)(t)w†(t) |∅⟩ →
N∑

k=1

√
∆tξ(tk)w

†
k |∅⟩ =

N∑
k=1

√
∆tξ(tk) |1k⟩ (2.8)

where we introduced the binned photon state: |1k⟩ = w†
k |∅⟩. We now see that: ⟨ψ|w†

kwk |ψ⟩ = ∆t|ξ(tk)|2

and the annihilation and creation operators wk and w†
k now describes the probability of observing a photon

in time bin k.
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Master’s Thesis 2.2. Scattering on Onesided Cavity

Figure 2.2: Illustration of the interaction with one part of the pulse at a time. In the top row, an initial
continuous fockstate is divided across N bins. At the subsequent timesteps labeled ti, bin number i interacts
with the system. Once all bins have interacted with the system, the state in the bins is the output state.
Image taken from ref. [20]

The interaction Hamiltonian equivalently becomes:

Hint(t) =
∑
k

fk(t)Hk,int =
∑
k

fk(t)ih̄
√
γ/∆t(a†wk − aw†

k) (2.9)

where we defined:

fk(t) =

{
1, if tk < t < tk +∆t

0, otherwise
= Θ(t− tk)−Θ(t− (tk +∆t)) (2.10)

where Θ is the heaviside function and Hk,int = ih̄
√
γ/∆t(a†wk − aw†

k). The Hamiltonian is thus constant
within each time-bin, which reduces the numerical complexity significantly. It also allows for an intuitive
mental picture: We are moving a conveyor belt of photon bins and letting one bin of the belt interact with
the system at a time. This is also illustrated in Fig. 2.2. Throughout the thesis, we will use the subscript k on
a Hamiltonian Hk to denote that it follows the form in (2.9), and it is thus understood that the Hamiltonian
is changing with each timestep k, but is constant WITHIN each timestep.

2.2 Scattering on Onesided Cavity

In the previous section, we introduced the time-bin formalism, and in this section, we are going to use it to
derive the dynamics of a single photon pulse scattering on a single-sided cavity. Such a system can also be
seen in Fig. 2.1, where a photonic crystal waveguide carries a quantum pulse that interacts with a one-sided
cavity. The differential equations governing the dynamics are defined from the Hamiltonian in eq. 2.9. Since
the Hamiltonian is constant within each time-bin, we can describe the evolution from time-bin n− 1 to n by
the unitary evolution [20]:

Un = U(tn−1, tn) = exp

(
−
∫ tn−1+∆t

tn−1

i

h̄
Hint(t

′)dt′

)
= exp

(
− i

h̄
Hk,int∆t

)
=

∞∑
m=0

1

m!

(
− i

h̄
Hn,int∆t

)m

(2.11)
which thus relates the state at time tn−1 to the state at time tn as: Un |ψn−1⟩ = |ψn⟩, where |ψk⟩ denote
the state at time tk. Up to first order in ∆t, Un is given as:

Un ≈ 1 +
√
γ∆t

(
a†wn − aw†

n

)
− γ

2
∆ta†awnw

†
n (2.12)
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Master’s Thesis 2.2. Scattering on Onesided Cavity

We consider the initial state being zero photons in the cavity and a one photon wavepacket (we use the Ket
|∅⟩ to describe the vacuum of the waveguide, whereas |0⟩ to describe the vacuum of the cavity):

|ψ0⟩ =
N∑

k=1

√
∆tξ(tk) |0⟩ |1k⟩ (2.13)

The updated state after the first interaction with the time-bin is then given as:

|ψ1⟩ = U1 |ψ0⟩ =
N∑

k=2

√
∆tξ(tk) |0⟩ |1k⟩+

√
∆tξ(t1) |0⟩ |11⟩+

√
γ∆tξ(t1) |1⟩ |∅⟩ (2.14)

where we have introduced bold enumeration |11⟩ for the time-bins that have passed the cavity to make the
bookkeeping easier. We also introduce ψ1(t1) =

√
γ∆tξ(t1) as the amplitude of the cavity excitation at time

t1. After step two, we then have:

|ψ2⟩ = U2 |ψ1⟩ =
N∑

k=3

√
∆tξ(tk) |0⟩ |1k⟩+

2∑
k=1

√
∆tξ(tk) |0⟩ |1k⟩ −

√
γ∆tψ1(t1) |0⟩ |12⟩

+
√
γ∆tξ(t2) |1⟩ |∅⟩ −

γ

2
∆tψ(t1) |1⟩ |∅⟩+ ψ1(t1) |1⟩ |∅⟩

(2.15)

We notice that we can collect the terms in front of the bins that have passed the cavity as ξout(t2) =
ξ(t2) −

√
γψ1(t1) and the amplitude of the cavity now reads: ψ1(t2) = ψ1(t1) − γ/2∆tψ1(t1) +

√
γ∆tξ(t2).

We can generalize these update rules as:

ψ1(tn+1) = ψ1(tn)−
γ

2
∆tψ1(tn) +

√
γ∆tξ(tn+1) (2.16)

ξout(tn+1) = ξ(tn+1)−
√
γψ1(tn) (2.17)

If we take the limit of ∆t → 0, we have tn+1 = tn and rearranging eq. 2.16, we arrive at the differential
equation:

ψ1(tn+1)− ψ1(tn)

∆t

∆t→0−−−−→ dψ1(t)

dt
= −γ

2
ψ1(t) +

√
γξ(1)(t) (2.18)

Solving the differential equation then gives access to the scattered or output field by the input-output relation
ξout(t) = ξ(1)(t)−√

γψ1(t).
In a more realistic case, we could add a detuning between the pulse and the cavity δ = ωc −ωw, where ωc is
the cavity frequency and ωw is the central frequency of the waveguide pulse. As shown in the appendix A.1,
moving into the rotating frame would correspond to adding the term δa†a to the Hamiltonian in eq. (2.9).
To get the correct equations of motion, we would then have to rederive the above equations. Luckily, in the
above case, the detuning term is simple and just adds a phase term −iδ∆ta†a to the unitary in eq. (2.12),
which in turn just adds a phase term in the equation of motion:

dψ1(t)

dt
= −(iδa +

γ

2
)ψ1(t) +

√
γξ(1)(t) (2.19)

One could, however, easily imagine that adding more complicated terms to the Hamiltonian would require
a more cumbersome rederivation. Indeed, as we shall see in the next section, an initial state consisting of
two photons leads to additional possible paths of a photon, resulting in significantly more complex equations
of motion. Automating this process to be less tedious is one of the main motivations behind the numerical
method introduced in Chapter 3.
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Master’s Thesis 2.3. Two-photon Continuous Fockstates

2.3 Two-photon Continuous Fockstates

Before we introduce our new numerical method, let us, however, get some intuition for traveling two-photon
states and why they complicate the scattering. It is straightforward to extend the single-photon state defined
in eq. (2.6) to a two-photon continuous state as [10]:

1√
2

[
W †[ξ]

]2 |∅⟩ = 1√
2

∫ tend

t0

dt′
∫ tend

t0

dt ξ(2)(t, t′)w†(t)w† (t′) |∅⟩ (2.20)

where ξ(2)(t, t′) = ξ(1)(t)ξ(1)(t′) is the two-photon wavefunction. The state is now defined over two times,
describing the probability of observing a photon at time t and another at time t′. In this case, the two-photon
wavefunction is a product state, and both probabilities are described by the same single-photon wavefunction
ξ(1)(t). This will, in general, not be the case. However, one can always expand the two-photon wavefunction
in terms of products of one-photon wavefunctions via a Singular Value Decomposition (SVD) as [14]:

ξ(2)(t, t′) =
∑
i

λiϕi(t)ϕi(t
′) (2.21)

where ϕi(t) are orthonormal basis functions and if we have a normalized wavefunction
∑

i λ
2
i = 1. In the

above product state, we would thus have λ21 = 1, i.e., the two-photon wavefunction contains only a product
state of two single-photon states. It is now also clear that the wavefunction fulfills ξ(2)(t, t′) = ξ(2)(t′, t), as
expected for bosons. When discretizing the photon into bins, we thus only need ≈ N2/2 bins. This can be
seen by:

1√
2

[
W †(ξ)

]2 |∅⟩ = 1√
2

∫ tend

t0

dt′
∫ tend

t0

dt ξ(2)(t, t′)w†(t)w† (t′) |∅⟩ (2.22)

→ 1√
2

N∑
i=1

N∑
k=1

∆tξ(2) (ti, tk)w
†
iw

†
k|∅⟩ (2.23)

=
1√
2

N∑
i=1

N∑
k ̸=i

∆tξ(2) (ti, tk)w
†
iw

†
k|∅⟩+

1√
2

N∑
i=1

∆tξ(2) (ti, ti)w
†
iw

†
i |∅⟩ (2.24)

=
2√
2

N∑
i=1

N∑
k>i

∆tξ(2) (ti, tk) |1ti1tk⟩+
N∑
i=1

∆tξ(2) (ti, ti) |2ti⟩ (2.25)

=
√
2

N∑
i=1

N∑
k>i

∆tξ(2) (ti, tk) | 1ti1tk⟩+
N∑
i=1

∆tξ(2) (ti, ti) |2ti⟩ (2.26)

This will be important in the next chapter when we want to represent the state numerically. In deriv-
ing the equations of motion, we will be taking ∆t → 0 (and thus also N → ∞), and the diagonal
containing two photons in the same time-bin will be vanishingly small and can thus be omitted. This
will not be the case in the numerical representation, but for now, we can take the initial state to be
|ψ⟩0 =

√
2
∑N

i=1

∑N
k>i ξ2 (ti, tk) |0⟩ |1i1k⟩. Applying the unitary operator in eq. (2.12) then leads to the

following state after the first timestep:

|ψ1⟩ = U1 |ψ0⟩ = |ψ0⟩+
√
2γ∆t

∑
k

ξ(t1, tk)∆t |1⟩ |∅, 1k⟩ = |ψ0⟩+ |ψabs,1⟩ (2.27)

In the subsequent timestep, the complexity grows immediately as multiple processes can take place. We can
break it into two scenarios; absorption of the next photon bin corresponding to U2 |ψ⟩0 and evolution of the
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Master’s Thesis 2.3. Two-photon Continuous Fockstates

absorbed photon in the cavity U2 |ψ⟩abs,1:

|ψ2⟩ = U2 |ψ1⟩ = U2 |ψ0⟩+ U2 |ψ⟩abs,1 (2.28)

The absorption of the next bin is simple:

U2 |ψ0⟩ = |ψ0⟩+
√
2γ∆t

∑
k

ξ(t2, tk)∆t |1⟩ |∅, 1k⟩ (2.29)

whereas for the already absorbed photon, we have terms corresponding to the reemission of a photon,
reflection of an input photon, and absorption of another photon:

U2 |ψ⟩abs,1 = |ψ⟩abs,1 +
√
2γ∆t2ξ(t1, t2) |2⟩ |∅, ∅⟩ −

√
2γ∆t

∑
k

ξ(t1, tk)∆t |0⟩ |12, 1k⟩ (2.30)

−
√
2γ∆tγ∆t/2

∑
k ̸=2

ξ(t1, tk)∆t |1⟩ |∅, 1k⟩ −
√
γ∆tγ∆tξ(t1, t2)∆t |1⟩ |∅, 12⟩ (2.31)

From here, it is easy to imagine the many branches appearing. A full derivation is not within the scope of
this thesis. Instead, we state the results of previous derivations [27] leading to the equations of motion:

ψ̇2

(
t̃n
)
=

√
2ψ

(2)
1

(
t̃n
)
ξ̃in

(
t̃n
)
− ψ2

(
t̃n
)
− 2iδ̃ψ2

(
t̃n
)
, ψ2(0) = 0

ψ̇
(2)
1

(
t̃n
)
=

√
2ξ̃in

(
t̃n
)
− 1

2ψ
(2)
1

(
t̃n
)
− iδ̃ψ

(2)
1

(
t̃n
)
, ψ

(2)
1 (0) = 0

ψ̇
(1)
1

(
t̃m, t̃n

)
= ξ̃in

(
t̃n
)
− 1

2ψ
(1)
1

(
t̃m, t̃n

)
− iδ̃ψ

(1)
1

(
t̃m, t̃n

)
, ψ

(1)
1

(
t̃m, t̃m

)
= 0

ψ̇
(0)
1

(
t̃m, t̃n

)
= − 1

2ψ
(0)
1

(
t̃m, t̃n

)
− iδ̃ψ

(0)
1

(
t̃m, t̃n

)
, ψ

(0)
1

(
t̃m, t̃m

)
= 1

(2.32)

where ψ2

(
t̃n
)

describes the amplitude of states |2⟩ |∅⟩, ψ(2)
1

(
t̃n
)

describes the amplitude of states |1⟩ |1k⟩,
ψ
(1)
1

(
t̃m, t̃n

)
describes the amplitude of states |1⟩ |1k⟩ coming from reabsorption processes, and ψ(0)

1

(
t̃m, t̃n

)
describes the amplitude of states |1⟩ |1k⟩ emission processes. Also, t̃n = γtn, δ̃ = δ/γ has been defined and
Ȧ here denotes differentiation of A with regards to tn. The input distribution is assumed to be a product
state ξ2(t1, t2) = ξin(t1)ξin(t2) with ξ̃in = ξin/

√
γ. The output relation is given as:

ξ̃
(2)
out

(
t̃m, t̃n

)
= ξ̃in

(
t̃m
)
ξ̃in

(
t̃n
)
+

1√
2

[√
2ψ2

(
t̃m
)
ψ
(0)
1

(
t̃m, t̃n

)
+ ψ

(2)
1

(
t̃m
)
ψ
(1)
1

(
t̃m, t̃n

)
−ψ(2)

1

(
t̃m
)
ξ̃in

(
t̃n
)
− ψ

(2)
1

(
t̃m
)
ψ
(0)
1

(
t̃m, t̃n

)
ξ̃in

(
t̃m
)
−

√
2ψ

(1)
1

(
t̃m, t̃n

)
ξ̃in

(
t̃m
)] (2.33)

with ξ̃(2)out
(
t̃m, t̃n

)
= ξ

(2)
out

(
t̃m, t̃n

)
/γ. Notice that the differential equations for ψ(1)

1

(
t̃m, t̃n

)
and ψ(0)

1

(
t̃m, t̃n

)
depend on two times and thus need to be solved for N different initial conditions where N is some binning
in time. This complex hierarchy of multiple coupled differential equations has to be solved motivates a
computer-assisted approach, where the derivation and subsequent solution are automatic. Any additions to
the Hamiltonian, such as a non-linearity, would also necessitate a rederivation. Indeed, even considering a
two-level emitter instead of a cavity would require new derivations as the emitter cannot be excited twice
(the state |2⟩ is not possible). In the following chapter, we discuss how we can automate this process by
representing the Hamiltonian numerically and solving the resulting differential equation.
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Chapter 3

WaveguideQED.jl

This chapter will introduce the numerical framework implemented in WaveguideQED.jl. The implementation
is based on the time-binned continuous fockstate formalism introduced in Chapter 2. We show that it
correctly recovers equations of motion in the limit of ∆t → 0 by doing a convergence study. Furthermore,
we introduce Lazy Operator data structures, which are used in our software implementation to enhance
performance.

3.1 Numerical Representation of One-photon States

In ch. 2, we used the time-binned picture to derive the equations of motion for a single-photon scattering
on a cavity. Ultimately, we took the limit of ∆t → 0 meaning infinitesimally small bins, thus restoring the
continuous fockstate. In this section, however, we will keep the time-binned photon representation and show
how we can obtain equivalent results numerically.
If we consider a continuous photon state in N bins with no more than a single photon, we will need a vector
of size N + 1 to represent it (plus one because we also need to represent vacuum |∅⟩). This is illustrated in
Fig. 3.1 with N = 5. In this truncated Hilbert space, the effect of applying the operator w†

3 is then given as

w†
3 |ψ⟩ =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ·


ψ∅
ψ1

ψ2

ψ3

ψ4

ψ5

 =


0
0
0
ψ∅
0
0

 (3.1)

here, ψi denotes the value stored in element i (starting from zero to represent vacuum and the subsequent N
elements to represent the single photon excitation). Figure 3.1 also shows the effect of applying the operator
w†

3: Move the element in |∅⟩ to the element in time-bin 3. In the sketch, we only denote non-zero changes
with the arrow; therefore, it is understood that all other elements are zero after the operation. Note that
Fig 3.1 shows the physical effect of applying w†

3. Numerically, the result of applying such operations is, as
we shall see, often stored in another vector dpsi, and a more accurate representation would therefore be to
draw an arrow between the input vector psi and the vector that stores the resulting state dpsi. For the
sake of simplicity, we omit this extra step in all illustrations.
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Master’s Thesis 3.1. Numerical Representation of One-photon States

Figure 3.1: A numerical representation of the one-photon state and the effect of applying the creation
operator w†

3. We only denote non-zero changes with the arrow; therefore, it is understood that all other
elements are zero after the operation. Numerically, another vector dpsi would be used to store the result
of the calculation. For simplicity, this vector is not shown either.

To solve the scattering problem, we combine the state of the waveguide with the state of the cavity by a
tensor product. Since we only consider a total of one excitation, we can truncate the Hilbert space of the
cavity to {|0⟩ , |1⟩} or equivalently a vector of length two. An arbitrary state of the waveguide and cavity
can thus be described as:

|ψ⟩ = |0⟩ ⊗

(
A0 |∅⟩+

N∑
k=1

√
∆tξ0(tk) |1k⟩

)
+ |1⟩ ⊗

(
A1 |∅⟩+

N∑
k=1

√
∆tξ1(tk) |1k⟩

)
(3.2)

where A0, A1, ξ0(tk), ξ1(tk) are the elements stored in a vector of the same structure as in Fig. 3.1. After
the tensor product, we thus have a vector of length 2 ·(N+1). We can here associate the first N+1 elements
with the cavity being empty: |0⟩ and the last N + 1 with the cavity having one photon: |1⟩. A numerical
representation of this state can be seen in Fig. 3.2. The action of the operators a†wk and aw†

k making up
the interaction Hamiltonian in eq. (2.9) with k = 3 is also shown. Again, the interpretation is clear, a†wk

removes an excitation from time-bin k and places it in the cavity mode, while aw†
k does the opposite.

1 function dpsi!(dpsi,psi,p,t)
2 y,d,nsteps,dt = p
3 timeindex = round(Int,t/dt,RoundDown) + 1
4 dpsi .= 0
5 dpsi[2+nsteps] = sqrt(y/dt)*psi[1+timeindex] - im*d*psi[2+nsteps]
6 dpsi[1+timeindex] = -sqrt(y/dt)*psi[2+nsteps]
7 end

Code Sample 1: Function to calculate the derivative, given by applying −iH(tk) = −iδaa†a+
√
γ/dt(a†wk−

aw†
k) to the state psi and saved in dpsi.

Based on these definitions of the operators, it is possible to set up a very simple simulation of the dynamics.
The governing equation is Schrödinger’s equation ∂

∂t |ψ⟩ = −iH |ψ⟩, and in Code Sample 1 we implement a
function in Julia that returns the derivate dpsi by applying −iH(tk) = −iδaa†a+

√
γ/dt(a†wk − aw†

k) to
psi as depicted in Fig. 3.1. Notice that timeindex determines which bin the waveguide operators wk and
w†

k address. Line 5 updates |1⟩ |∅⟩ with
√
γ/∆ta†wk and −iδaa†a. Line 6 updates |0⟩ |1k⟩ with −

√
γ/∆taw†

k.
This derivative function can then be passed to a differential equation solver to get the dynamics.
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Figure 3.2: A numerical representation of the combined state of a one photon state in the waveguide |1k⟩
and a cavity containing zero |0⟩ or one photon |1⟩. The effect of applying the operators a†w3 and aw†

3 is also
shown with blue and red arrows, respectively.

In the following, we consider a Gaussian input state with the wavefunction ξ(1)(t) defined as

ξ(1)(t) =

√
2

σ

(
log(2)

π

)1/4

exp

(
−2 log(2)(t− t0)

2

σ2

)
(3.3)

In Code Sample 2, we use the derivative function from Code Sample 1 to solve the scattering of an input
state with σ = 1 and t0 = 5. We can compare the solution to the analytically obtainable solution to the
equation of motion in eq. (2.19). As shown in appendix A.2, the analytical solution is given as:

ξ
(1)
EOM(t) = ξ(1)(t)−√

γ

√
πe

b2

4a+bt0

2
√
a

(
erf
(
2a(t− t0)− b

2
√
a

)
+ erf

(
2at0 + b

2
√
a

))
(3.4)

with a = 2 log(2)/σ2 and b = iδ+γ/2. The analytical solution is shown together with the numerical solution
in Fig. 3.3a. We see how the photon pulse is distorted from the interaction with the cavity. The dip in the
scattered wavefunction around t ≈ 5.5/γ arises due to destructive interference between the reemitted field
from the cavity and the reflected pulse. We will study this phenomenon in greater detail later. For now, it
is important to notice the convergence in Fig. 3.3b showing that the two methods converge as the number
of bins increases (meaning ∆t→ 0).

0.0 2.5 5.0 7.5 10.0 12.5 15.0
time [1/ ]

0.00

0.25

0.50

0.75

|ξ
in
,o

u
t|2

Input pulse
ξN

ξEOM

(a)

102 103

Number of Bins

10 3

10 2

10 1

||ξ
N
−
ξ E

O
M
|| 2
/
||ξ

E
O
M
|| 2

(b)

Figure 3.3: (a) The scattering of a Gaussian single-photon pulse defined in eq. (3.3) on a single-sided cavity
with σ = 1 and t0 = 5. The solution to the equations of motion ξEOM from eq. (3.4) is shown together
with the numerical solution from the above code ξN (with a time-bin size of ∆t = 0.1/γ). The two methods
are seen to produce identical results. (b) Convergence plot showing the relative error in the L2-norm
||f ||2 =

∫∞
−∞ |f(t)|2dt between the equation of motion solution and the numerical solution.
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1 using DifferentialEquations
2 using LinearAlgebra
3 using PyPlot
4

5 #Define parameters
6 γ,δ,dt = 1,0,0.1
7 times = 0:dt:10
8 N = length(times)
9 p = (γ,δ,N,dt)

10

11 #Define input gaussian state with width s = 1 and arrival time t0=5
12 xi(t,s,t0) = sqrt(2/s)* (log(2)/pi)^(1/4)*exp(-2*log(2)*(t-t0)^2/s^2)
13 psi = zeros(ComplexF64,2*(N+1))
14 #Index 2:N+1 to adress |0⟩ |1k⟩ as in Fig. 3.2

15 psi[2:N+1] .= sqrt(dt)*xi.(times,1,5)
16

17 #Define and solve ODE problem by giving initial state psi and differential operator dpsi!
18 prob = ODEProblem(dpsi!, psi, (times[1], times[end]+dt), p)
19 sol = solve(prob, OrdinaryDiffEq.DP5();reltol = 1.0e-8,abstol = 1.0e-10);
20 psi_out = sol[end][2:N+1]

Code Sample 2: Code for solving scattering of single-photon pulse on onesided cavity.

The above numerical implementation is very simple and fast, but it is also hardcoded to solve one specific
problem. This is not the ultimate goal of the implementation, as we want it to be flexible and able to solve
many different waveguide QED problems. The natural extension is to implement the operators a, a†, wk,
and w†

k as matrices and then combine them through the tensor product ⊗. In the next section, we show how
this can be done in QuantumOptics.jl a package for simulating Quantum Optics in Julia [25].

3.2 Sparse Operators

In this section, we show how to implement the waveguide operators wk and w†
k as sparse matrices in Quan-

tumOptics.jl. As we shall see the cost of allocating memory for these matrices quickly becomes a limiting
factor as the size of the problem grows. Lazy operators, introduced in section 3.4 is the solution. For now,
it is, however, still instructive to consider the more straightforward case of sparse matrices.
In the truncated Hilbert space of only a single-photon time-binned state, we can define waveguide operators
according to the transition they represent wk = |∅⟩ ⟨1k| and w†

k = |1k⟩ ⟨∅|. In Julia, using QuantumOptics.jl,
this can be accomplished by the code in Code Sample 3. Here, we define the basis of the waveguide bw as
a GenericBasis, which is an object subsequently used to define kets belonging to that Hilbert space. In this
case, the most important property of the Basis is that it contains the size of Hilbert space (N + 1, where
N is the number of bins). wk is then initialized by taking the tensor product between the ket |∅⟩ and bra
⟨1k|. |∅⟩ is defined from basisstate(bw,1): A state belonging to the basis of waveguide bw, with the
first element being occupied. Similarly, ⟨1k| is then dagger(basisstate(bw,1+timeindex)), where
timeindex here controls the time-bin we are addressing (in this case bin number one) and dagger() turns
the ket into a bra. w†

k is also just defined from applying dagger() to w.
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1 dt = 0.1
2 times = 0:dt:10
3 N = length(times)
4 bw = GenericBasis(N+1)
5 timeindex = 1
6 w = basisstate(bw,1) ⊗ dagger(basisstate(bw,1+timeindex))
7 wd = dagger(w)

Code Sample 3: Code for creating waveguide operators w and w† as sparse matrices.

With the operators defined, we can combine them with a cavity through the tensor product ⊗ (in Julia:
\otimes followed by TAB). In Code Sample 4, we define the basis of the cavity bc containing at max one pho-
ton, the annihilation operator of this basis a = destroy(bw) and creation operator ad = create(bw).
These are then combined with the waveguide operators w and wd via tensor products to form a†wk and
a†wk, which finally can be combined to form the Hamiltonian H = ih̄

√
γ/∆t(a†wk − aw†

k) + h̄δa†a. Note
that in all code and simulations, we set h̄ = 1.

1 bc = FockBasis(1)
2 a = destroy(bw)
3 ad = create(bw)
4 n = (ad*a) ⊗ identityoperator(bw)
5 adw = ad ⊗ w
6 wda = a ⊗ wd
7 H = im*sqrt(γ / dt) *(adw - wda) + δ * n

Code Sample 4: Code for combining cavity annihilation and creation operators a and a† with waveguide
operators w and w†.

In Code Sample 4, we, however, only created the Hamiltonian for the first timestep. Our Hamiltonian changes
at each timestep, so we need to define a time-dependent problem. This is done in Code Sample 5, where we
calculate the Hamiltonian for all timesteps in lines 1-8 and define a function that returns the Hamiltonian
for the corresponding timestep in lines 9-12. In lines 14-16, we define the input state, in a similar fashion as
in the previous section, except that we can now just combine the cavity and waveguide through the tensor
product. Finally, say we are interested in the number of photons inside the cavity as a function of time, we
can define the expectation-value function na in line 18. In line 19, we then solve the time-dependent problem
by using our defined input state psi_in, our function that returns our time-dependent Hamiltonian Htime,
and our expectation value function na.
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1 Hlist = Array{Operator}(undef,N)
2 for i in 1:N
3 w = basisstate(bw,1) ⊗ dagger(basisstate(bw,1+i))
4 wd = dagger(w)
5 adw = ad ⊗ w
6 wda = a ⊗ wd
7 Hlist[i] = im*sqrt(γ / dt) *(adw - wda) + δ*n
8 end
9 function Htime(time,psi)

10 timeindex = round(Int,time/dt,RoundDown)+1
11 Hlist[timeindex]
12 end
13

14 psi_waveguide = Ket(bw)
15 psi_waveguide.data[2:N+1] .= sqrt(dt)*xi.(times,1,5)
16 psi_in = fockstate(bc,0) ⊗ psi_waveguide
17

18 na(time,psi) = expect(n,psi)
19 _,n = timeevolution.schroedinger_dynamic(times, psi_in, Htime,fout=na)

Code Sample 5: Code for defining a time-dependent problem in Julia.

In Fig. 3.4a, we show the population in the cavity as a function of time for different detuning values δ as
calculated by Code Sample 5. It is clear that as the detuning increases, the pulse absorption decreases.
Comparing with Fig. 3.4b, where we show output wavefunction ξout(t), we see that for larger detuning no
dip appears. This is due to the lower cavity population, meaning less destructive interference and thus less
distortion of the photon wavepacket.
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Figure 3.4: (a) Cavity photon population as a function of time for different values of detuning. (b) The
scattered wavefunction as a function of time.

In this example, representing the operators wk and w†
k as sparse matrices worked well since the Hilbert

spaces we considered were small. In the next section, we will consider two-photon states, and as we shall
see, the overhead associated with allocating these matrices quickly dominates the performance.
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3.3 Numerical Representation of Two-photon States

As shown in chapter 2, the two-photon time binned state is given as:

|ψ⟩ =
√
2

N∑
i=1

N∑
k>i

∆tξ2 (ti, tk) | 1ti1tk⟩+
N∑
i=1

∆tξ2 (ti, ti) |2ti⟩ (3.5)

Numerically, we need N(N − 1)/2 + N = N(N + 1)/2 bins to represent this state, where N here is the
number of bins of the single-photon state. The two-photon state is numerically a vector with N(N + 1)/2
elements but is best visualized as a matrix, as shown in Fig. 3.5. Note that the lower triangular part is not
stored in memory due to the symmetry of the two-photon state. In the Figure, we also show how the creation
operator w†

3 relates a one-photon state to a two-photon state, where the darker red square carries a factor
of

√
2 since w†

3 |13⟩ =
√
2 |23⟩. Here we imagine that we have a combined state of a single-photon state and

a two-photon state, where the first element is the vacuum, the following N elements are the single-photon
state, and the last N(N +1)/2 elements are the two-photon state. In this truncated space, we can thus also
write the creation operator as:

w†
k = |1k⟩ ⟨∅|+

∑
j<k

|1k, 1j⟩ ⟨1j |+
∑
j>k

|1j , 1k⟩ ⟨1j |+
√
2 |2k⟩ ⟨1k| (3.6)

where the first term takes the vacuum to a single-photon state (as introduced earlier in sec. 3.2), the second
term takes a single-photon state at a previous time j to a combined state of a photon at time j and k, and
the third term is similar and takes a future single-photon state at time j and takes it into the combined state
of a photon at time j and k. The last term takes the single-photon at exactly time k into the state with two
photons in the same time bin k and, thus, carries a factor of

√
2.

Figure 3.5: Numerical representation of a two-photon state together with the action of the waveguide operator
w†

3 on a single-photon state. The darker red square has a factor of
√
2 to satisfy w†

3 |13⟩ =
√
2 |23⟩

Again this can be described as a sparse matrix. However, the sparse matrix is now of size 1+N+N(N+1)/2.
WithN = 100, this corresponds to a 5151x5151 matrix. If we now want to combine it with a cavity containing
two photons to construct the operators a†wk and aw†

k, we have a tensor product between a 3x3 matrix and a
5151x5151 matrix. As shown in section 3.2, we construct and perform this tensor product for each timestep
in the simulation. A quick benchmark reveals that this task quickly grows expensive. In Fig. 3.6, we compare
the time spent creating the Hamiltonians and the time spent solving the actual differential equations. As
the number of bins increases, we see that we spend most of the time just creating the Hamiltonian for the
problem. The way the Hamiltonian change is, however, well known. We can exploit this and implement
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the operator instead as an object that executes a predefined function dependent on time, which mimics the
behavior of doing the matrix multiplication. This is the core principle behind the Lazy Operators used in
WaveguideQED.jl, which we will introduce in the next section.
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Number of bins
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tim

e 
[s

]
Creating operator
Solving Problem

Figure 3.6: Comparison between time spend creating the Hamiltonians and solving the actual problem (here
scattering of a two-photon pulse of a cavity with the Hamiltonian defined in eq. (2.9) ). It is evident that for
more than N ≈ 60, the majority of the computational time is taken up by just creating the Hamiltonians.

3.4 Lazy Operators

Motivated by the significant overhead in creating the Hamiltonian for each time step, as seen in section 3.3,
we want to represent the waveguide operator w†

k as an object that can be applied to a ket and perform
the already known operation. If we only consider a waveguide ket, the implementation is simple. In Code
Sample 6, we define a structure representing the waveguide operator w†

k. basis_l and basis_r are objects
that contain information about the Hilbert space and will become important when we later want to combine
the structure with operators belonging to other Hilbert spaces. factor allows us to define arithmetic
operations. As an example, β ∗w†

k, would update factor as: factor = β * factor. Finally, timeindex
allows us to change k in each timestep. In the first timestep, we want to apply the operator w†

1, and we thus
set timeindex = 1. In the next timestep, we then update timeindex = 2 and so on.

1 abstract type WaveguideOperator{B1,B2} <: AbstractOperator{B1,B2} end
2 mutable struct WaveguideCreate{B1,B2,Np,idx} <: WaveguideOperator{B1,B2}
3 basis_l::B1
4 basis_r::B2
5 factor::ComplexF64
6 timeindex::Int
7 end

Code Sample 6: Structure in Julia for defining Lazy Operator.

But how is the multiplication done? In Code Sample 7 lines 1-5, we show the multiplication routine for w†
k on

a state that contains a single photon. The routine updates the vector result as: result = factor * α *
w†

k * b + β * result (note the presence of factor). The routine for doing two-photon multiplication is
more complex and can be viewed in appendix B.1. In lines 6-10, the multiplication symbol "*" is overloaded,
and in lines 11-15, we apply the operator w†

k to a vacuum state |∅⟩. Note that we have created a custom basis
WaveguideBasis from which we can initialize our operator with destroy(bw) and a state belonging to
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Figure 3.7: The one-photon wavefunction ξ(1)(t) as a function of time for the state w†
k |∅⟩ =

∑
i ξ(ti) |1i⟩

with ξ(ti) = δi,k for different k’s.

this Hilbert space with Ket(bw). The resulting waveguide state result = w†
k |∅⟩, is shown in Fig. 3.7 for

different k’s. As expected, we see sharp spikes at the defined k’s.

1 function mul!(result,a::WaveguideCreate{B,B,1,idx},b,alpha,beta) where {B,idx}
2 rmul!(result,beta)
3 result[1] += alpha*a.factor*b[a.timeindex+1]
4 result
5 end
6 function *(op::AbstractOperator{BL,BR}, psi::Ket{BR,T}) where {BL,BR,T}
7 result = Ket{BL,T}(op.basis_l,similar(psi.data,length(op.basis_l)))
8 mul!(result,op,psi)
9 return result

10 end
11 bw = WaveguideBasis(1,times)
12 wd = create(bw)
13 wd.timeindex = k
14 psi = Ket(bw)
15 psi.data[1] = 1
16 result = wd*psi

Code Sample 7: Code for multiplication with Lazy waveguide operator. Lines 1-5 show how we can perform
the action of the operation by the matrix in eq. (3.1) and illustrated in Fig. 3.1. Lines 6-10 show how the
multiplication is performed ad lines 11-16 we create the operator and perform the operation.

Let us consider if we want to add two waveguide operators. If they were matrices, we could just add the
elements together, but this is not possible with the LazyOperator implementation. Instead, we create another
LazyOperator object LazySum, representing the sum of operators. The structure of the LazySum can be
seen in Code Sample 8. Lines 1-6 define the structure, where factors are for arithmetic operations, and
operators is a vector or tuple containing the operators to be summed. Lines 7-12 define how LazySum
objects are added together; the fields factors and operators are concatenated, and a new LazySum
object is instantiated. Lines 13-19 define the multiplication routine, where we loop over all operators in the
operators field. Adding two waveguide operators can thus just be defined as creating a LazySum object
as shown in Code Sample 9.
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1 mutable struct LazySum{BL,BR,F,T} <: AbstractOperator{BL,BR}
2 basis_l::BL
3 basis_r::BR
4 factors::F
5 operators::T
6 end
7 function +(a::LazySum{B1,B2}, b::LazySum{B1,B2}) where {B1,B2}
8 check_samebases(a,b)
9 factors = _cat(a.factors, b.factors)

10 ops = _cat(a.operators, b.operators)
11 @samebases LazySum(a.basis_l, a.basis_r, factors, ops)
12 end
13 function mul!(result::Ket{B1},a::LazySum{B1,B2},b::Ket{B2},alpha,beta) where {B1,B2}
14 mul!(result,a.operators[1],b,alpha*a.factors[1],beta)
15 for i=2:length(a.operators)
16 mul!(result,a.operators[i],b,alpha*a.factors[i],1)
17 end
18 return result
19 end

Code Sample 8: LazySum implementation. Lines 1-6 define the structure. Lines 7-12 define how LazySum
objects are added together. Lines 13-19 define the multiplication operation.

1 function +(a::WaveguideOperator,b::WaveguideOperator)
2 @assert a.basis_l == b.basis_l
3 @assert a.basis_r == b.basis_r
4 LazySum(a) + LazySum(b)
5 end
6 two_wd = wd + wd #LazySum

Code Sample 9: Addition of waveguide operators returning a LazySum.

In all of the above, we assumed that we were only considering the Hilbert space waveguide. However, we want
to combine the waveguide operator with other quantum systems through the tensor product. Naturally, we,
therefore, need to introduce a LazyTensor object. The code for performing the lazy tensor product is much
more complicated than the lazy sum case. Thus, instead of going over the code in its entirety, we instead
consider a specific example and illustrate how we can perform a lazy tensor operation. Let us consider a
tensor product between two two-level systems. We can write this as:

(a |g⟩+ b |e⟩)⊗ (c |g⟩+ d |e⟩) =
(
a
b

)
⊗
(
c
d

)
=


ac
ad
bc
bd

 (3.7)

The transition operator for excited to ground state is σ = |g⟩ ⟨e| =
(
0 0
1 0

)
and if we want to apply it to
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the second emitter, we tensor it with the identity operator. Without inferring the tensor product lazily, this
would look like:

I ⊗ σ


ac
ad
bc
bd

 =

(
1 0
0 1

)
⊗
(
0 1
0 0

)
ac
ad
bc
bd

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



ac
ad
bc
bd

 =


ad
0
bd
0

 (3.8)

This operation could, however, also have been done by first applying σ to the first two elements (notice we
don’t need to subsequently apply the identity operator):

I ⊗ σ


ac
ad
bc
bd

 =


(
0 1
0 0

)
(
0 1
0 0

)


ac
ad
bc
bd

 =


ad
0
bd
0

 (3.9)

where it is here understood that the red matrix is applied to red elements and the blue matrix to blue
elements. If we instead wanted to apply σ ⊗ I, this would look like:

σ ⊗ I


ac
ad
bc
bd

 =


(
0 1
0 0

)
(
0 1
0 0

)


ac
ad
bc
bd

 =


bc
bd
0
0

 (3.10)

We are now applying the matrices on a smaller vector formed by taking every second element. The formula
for the index I of element i in system 1 and element j in system 2 is: I = i + 2 · (j − 1). More generally, if
we have multiple systems, we can access any arbitrary element by calculating the index as shown in Code
Sample 10:

1 I = indices[1]
2 for k in 2:length(indices)
3 I += strides[k]*(indices[k]-1)
4 end

Code Sample 10: Calculates the index I to access element {i,j,k,...} given by the vector indices. Strides
is a vector containing strides for each sub-Hilbert space and is calculated in Code Sample 11

where indices is a vector containing the indices of the elements that we want to access such that the first
element i is the index of the element in subsystem 1, the second element j is the index of the element in
subsystem 2, and so forth. strides is a vector containing the strides of the basis and can be calculated as
shown in Code Sample 11:

1 strides[1] = 1
2 for m=2:length(shape)
3 strides[m] = strides[m-1]*shape[m-1]
4 end

Code Sample 11: Calculates the stride of each sub-Hilbert space, here shape is the sizes of the sub-Hilbert
spaces.
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where shape is the sizes of the subsystems. In the above case shape = (2,2) and strides = (1,2).
Using these indices, we can infer how the operators should be applied. The actual code for performing the
LazyTensor product is a bit more involved but uses this principle. A Code Sample can be seen in appendix
B.2.
With the LazyOperators implemented, we are now ready to solve a two-photon pulse scattering on a cavity.
In Fig. 3.8, we benchmark the LazyOperator implementation vs. the Sparse operator implementation. The
performance gain is huge for more than ≈ 50 bins. Note that the time for the LazyOperator benchmark
is both creating the operators and solving the problem. There is some small constant overhead related
to creating the LazyOperators, which for small numbers of bins, makes it slightly slower than the sparse
method. However, the time-bin picture is barely valid for this number of bins. In any realistic simulation,
more than 100 bins are used, and the performance gain is significant. The performance gain comes from not
having to allocate the matrices and also because we are no longer looping through a sparse matrix where
looking up indices is slow.

101 102

Number of bins

10 2

10 1

100

101

tim
e 

[s
]

Sparse: Creating
Sparse: Solving
Lazy: Solving and creating

Figure 3.8: Benchmark of lazy operator implementation compared to the time taken to create Hamiltonians
in sparse version, and time taken to solve the problem in sparse version. We see that the time taken to
solve the problems is almost equivalent, meaning that there is effectively no overhead in creating the Lazy
operators.

3.5 Twophoton Scattering: Cavity vs. Emitter

One of the major advantages of the numerical implementation in WaveguideQED.jl is flexibility. In this
section, we will illustrate the flexibility by considering the scattering of a two-photon pulse on a cavity and
emitter, respectively. In sec. 2.3, we derived the equations of motion for a two-photon pulse scattering on a
cavity, and we can use these to confirm that our implementation is also working for two-photon states. For
the scattering of an emitter, even though it is mathematically close to the cavity (we just restrict the total
number of photons to one), we would have to rederive the equations of motion as this introduces non-trivial
effects, such as stimulated emission. In the numerical framework, it is trivial to change the operator a→ σ
thus showcasing its strength.
We start by considering the scattering of a two-photon pulse in Fig. 3.9. The code for setting this up in
WaveguideQED.jl is shown in Code Sample 12, and a convergence study using the hierarchical differential
equations in eq. (2.32) is done in appendix B.3. Note that the waveguide operators w and wd in Code Sample
12 are effortlessly combined with operators from QuantumOptics.jl. Behind the scenes, lazy operations
such as LazyTensor, LazySum, and LazyProduct, are all performed such that the user can manipulate
the operators with ⊗,+,−, and ∗ as if they were standard operators defined via matrices. This allows for
flexibility in setting up simulations and gives an intuitive user interface.
The initial state here consists of two one-photon Gaussian pulses |ψ⟩in =

∑
k

∑
j ξ

(2)(t, t′)∆tw†
kw

†
j |∅⟩ with

ξ(2)(t, t′) = ξ(1)(t)ξ(1)(t′) and ξ(1)(t) given in 3.3. In the top row, we show the two-photon wavefunction
ξ(2)(t, t′), and in the lower row, we show the SVD one-photon wavefunctions λ2i |ϕi(t)|

2 with the three largest
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singular values λi (see eq. (2.21)). We find that in all cases, the largest singular value is one, meaning that
the scattered two-photon state is still in a product state. Indeed, the wavefunctions in the scattered single-
photon case shown in Fig. 3.4b are identical to SVD wavefunction ϕ(t) in the two-photon case. After the
scattering, we thus just have a product state of the single-photon scattered wavefunctions and the photons
have thus not really interacted with each other, but just scattered separately off the cavity.

1 times = 0:0.01:15
2 bc = FockBasis(2) #Change to 1 to simulate emitter.
3 bw = WaveguideBasis(2,times)
4 a = destroy(bc)
5 ad = create(bc)
6 w = destroy(bw)
7 wd = create(bw)
8 n = ad*a ⊗ identityoperator(bw)
9 wda = a ⊗ wd

10 adw = ad ⊗ w
11 H = δ*n + im*sqrt(γ/dt)*(adw-wda)
12

13 xi(t,s,t0) = sqrt(2/s)* (log(2)/pi)^(1/4)*exp(-2*log(2)*(t-t0)^2/s^2)
14 xi2(t1,t2,s1,s2,t0) = xi(t1,s1,t0)*xi(t2,s2,t0)
15 psi_waveguide = twophoton(bw,xi2,times,1,1,5)
16 psi_in = fockstate(bc,0) ⊗ psi_waveguide
17

18 psi_out = waveguide_evolution(times, psi_in, H)

Code Sample 12: Code for simulating the scattering of a two-photon pulse. Line 1-11 sets up the Hamiltonian,
while 13-16 define the input state (twophoton takes in a function xi2 defining the wavefunction and creates
a two-photon state with this wavefunction). In line 18, we solve scattering with a differential equation solver.

If instead of the cavity, we consider a two-level system, stimulated emission triggered by the second photon
leads to a strong correlation between the two photons: Observing the first means you are more likely to
observe the second one. This is shown in Fig. 3.10, where we consider the scattered wavefunction and
the three most populated one-photon decompositions. The wings of the bird-like structure of the scattered
wavefunction ξ(2)(t1, t2) for δ = 0 correspond to an entanglement in time between the two photons. Similarly,
it is evident that the single-photon decomposition requires multiple wavefunctions, and we thus no longer
have a simple product state. Due to the saturation of the emitter, which can only be excited by one photon,
the two photons thus effectively interact through the emitter, by stimulated emission. As the detuning
increases, the pulse and the emitter interaction diminishes, and we recover a scattered product state (for
δ = 5, we have λ21 = 0.998).
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Figure 3.9: Scattering of a two-photon pulse on a single-sided cavity with a Gaussian product state
|ψ⟩in =

∫
dt
∫
dt′ξ

(2)
in (t, t′) |1t⟩ |1t′⟩ where ξ(2)in (t, t′) = ξ

(1)
in (t)ξ

(1)
in (t′) with ξ

(1)
in (t) given in eq. (3.3) for dif-

ferent detunings δ. Upper panels: The scattered two-photon state wavefunction ξ
(2)
out(t, t

′) from the state
|ψ⟩out =

∫
dt
∫
dt′ξ

(2)
out(t, t

′) |1t⟩ |1t′⟩. All contour plots are normalized so that the largest value is unity.
Lower panels: SVD (see eq. (2.21)) composition of the scattered two-photon state ξ(2)out(t, t

′) with the three
largest singular value functions shown. Noticeably only one SVD is relevant and the cavity thus also outputs
a product state.
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Figure 3.10: Same as Fig. 3.9 but scattering on a two-level system. The nonlinearity of the two-level-system
gives an entangled two-photon state that can not be decomposed into a single function, which is seen in the
SVD.
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Chapter 4

Multiple waveguides

This chapter introduces how to model interactions with multiple waveguides (or equivalently multiple waveg-
uide modes) in the time-binned photon picture. We will show how this can be used to extend the simulations
in chapter 3 so that we are no longer restricted to only one propagating mode. We consider an emitter cou-
pled to two directional waveguide modes and reproduce results from a recent experimental demonstration of
two-photon scattering in photonic crystal waveguides [3]. We also consider how to model direct interactions
between waveguide modes. Such interactions can arise from scattering elements in the waveguide leading
to, e.g., a beamsplitter. We start by considering a fundamental Hamiltonian shown to obey flux conserva-
tion and time-reversal symmetry as required by input-output theory or in the classical limit: coupled mode
theory. By discretizing the Hamiltonian into time bins, we find a discrepancy between the expected input-
output relations and the discretized Hamiltonian. We investigate this discrepancy by considering the change
in the lifetime of an emitter coupled to a waveguide with a scattering element. We find inconsistencies in
the emitter lifetime found by the numerical approach but also show that these can be solved by an effective
renormalization of the interaction strength between the emitter and waveguide modes.

tim
e

A

D

B

C

A

B

D

C

Figure 4.1: Left: Sketch of a beamsplitter, where an incoming pulse (blue) scatters on the beamsplitter and
is split into two identical output pulses (red). Right: Numerical representation of the interaction between
binned photons in two waveguides. The initial state is defined at t0, and when tn is reached, the two pulses
have interacted, and in the shown sketch, the beamsplitter transformation has been performed.
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4.1 Representing multiple waveguides efficiently

Before we simulate the interactions with multiple waveguides, we will discuss how to represent them numer-
ically. The naive approach is to define two waveguide bases, as introduced in chapter 3, and do a tensor
product between them. However, a quick estimate of the total size of the Hilbert space reveals this approach
to be infeasible. Suppose we want to describe two waveguide modes interfering on a beam splitter. Although
the initial state only contains a single photon in each waveguide, we can have two photons in the waveguides
after the interaction. Thus, we need two waveguide bases for modes a and b, each containing up to two
photons. If we take N = 100, we thus have two Hilbert spaces each of size: 1 + N + N(N + 1)/2 = 5151,
meaning a combined Hilbert space of size: 51512 = 26, 532, 801!!! Even with the LazyOperators and sparse
representations, this is too large to be numerically feasible. Luckily, we can create a much more efficient
storing strategy by realizing that we are storing unnecessary parts of the state vector. In this example, we
only have a total of two excitations, meaning that states with two photons in each waveguide simultaneously
are unobtainable, that is, states of the type:

∑
i,j,k,l ξ

(4)(ti, tj , tk, tj) |1i, 1j⟩a |1k, 1j⟩b, where the subscripts
a and b denote waveguide modes a and b, respectively. Therefore, if we restrict ourselves to states only
containing at max two excitations, the Hilbert space reduces drastically in size. We are thus describing
states with the general form:

|ψ⟩ = |∅⟩a |∅⟩b +
∑
k

ξ(1)a (tk) |1k⟩a |∅⟩b +
∑
k

ξ
(1)
b (tk) |∅⟩a |1k⟩b +

∑
k,l≥k

ξ(2)a (tk, tj) |1k, 1j⟩a |∅⟩b (4.1)

+
∑
k,l≥k

ξ
(2)
b (tk, tj) |∅⟩a |1k, 1j⟩b +

∑
k,l

ξ
(2)
a,b(tk, tj) |1k⟩a |1j⟩b (4.2)

Notice that we now have a new two-time wavefunction ξ(2)a,b(tk, tj) describing having a single-photon excitation

simultaneously in waveguide a and b. ξ(2)a,b(tk, tj) = ξ
(2)
a,b(tj , tk) is in general not true, and we thus store a N2

matrix to represent this state. An illustration of the total state of two waveguides containing two excitations
can also be seen in Fig. 4.2. Here, we also show the effect of acting with the creation operators w†

3,a/b, where
all blue lines are associated with creating a photon in waveguide mode a and red lines with creating photons
in waveguide mode b. Our Hilbert space is now of size 1+N +2N(N +1)/2+N2 = 20201, thus three orders
of magnitude smaller than the initial naive approach!

If we had more than two waveguides, we would need to store a combination of one photon in one waveg-
uide and one photon in another. Considering three waveguide modes a, b, and c, we would thus have the
following combinations |1i⟩a |1j⟩b, |1i⟩b |1j⟩c, and |1i⟩a |1j⟩c (as well as two photons in the same waveg-
uide |1i, 1j⟩a, |1i, 1j⟩b, and |1i, 1j⟩c). When creating a waveguide basis with three waveguides using bw =
WaveguideBasis(Np,Nw,times), all of these combinatorics are done automatically. Here, Np is the
number of photons in total, and Nw = 3 is the number of waveguide modes. Addressing the individual
waveguides is likewise done by indexing the waveguide operator: w = destroy(bw,i), where i, here is
indexing the i’th waveguide mode in the basis. With this interface, we can easily consider multiple waveguide
modes effortlessly, and we showcase this in the following section.
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Figure 4.2: Illustration of numerical representation of two waveguides containing two excitations. Blue colors
are associated with creating a photon in waveguide a and red with creating a photon in b.
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4.2 Scattering On a Single Emitter

Figure 4.3: Illustration of a right propagating excitation (blue) in a waveguide coupled to a two-level system
with the factor γ. After the blue pulse has scattered, there is also an excitation going to the left (red).
A coupling between the left and right propagating modes V is also shown, which can be thought of as a
partially transmitting mirror in the waveguide.

With an effective representation of multiple waveguides, we can now simulate an emitter coupled to multiple
waveguide modes. In Fig 4.3, we show a waveguide with two directionally propagating modes (left and right)
coupled to a two-level system with the rate γ. In the waveguide, we have also placed a partially transmitting
mirror (PTE) which couples the left and right propagating modes with each other with a strength V . We
will discuss this PTE and how to model it in detail in later sections. We start by considering the scattering
element to be completely transparent, and the Hamiltonian for this configuration is:

Hk =
√
γL/∆t(σ

†wk,L + σw†
k,L) +

√
γR/∆t(σ

†wk,R + σw†
k,R) (4.3)

Here, we have introduced subscripts R and L to denote right and left propagating excitations. γi denotes the
coupling to waveguide i, which we assume in the following to be symmetric γR = γL = γ/2. This system is
studied theoretically in ref. [28] and experimentally in ref. [3], where a quantum dot is placed in a photonic
crystal waveguide.
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1 #Define basis
2 times = 0:0.1:10
3 be = FockBasis(1)
4 bw = WaveguideBasis(2,2,times)
5

6 #Define operators for interacting with emitter
7 swdR = create(bw,1) ⊗ destroy(be)
8 sdwR = destroy(bw,1) ⊗ create(be)
9 swdL = create(bw,2) ⊗ destroy(be)

10 sdwL = destroy(bw,2) ⊗ create(be)
11

12 #Setup Hamiltonian
13 γR,γL = 1,1
14 H = im*sqrt(γR/dt)*(sdwL-swdL) + im*sqrt(γR/dt)*(sdwR-swdR)
15

16 #Initial state
17 w=1 #width of gaussian pulse
18 psi_in_two = twophoton(bw,1,xi2,w,w,t0) ⊗ fockstate(be,0)
19 psi_in_single = onephoton(bw,1,xi,w,t0) ⊗ fockstate(be,0)

Code Sample 13: Code for simulating scattering of emitter coupled to two channels. In lines 1-3, we define
the bases used. Lines 7-10 define σw†

k,R/L, and lines 13-14 combine the operators to define the Hamiltonian.
In line 18, we define the initial two-photon state, and in line 19 the single-photon state. xi and xi2 are
Gaussian functions as also defined in Code Sample 12 and studied in Fig. 3.9 and 3.10.

In the following, we show that with the Hamiltonian in eq. (4.3), we can reproduce the results of the
experiment in ref. [3], where the difference between scattering a two-photon pulse or a one-photon pulse on an
emitter in a waveguide is considered. In Code Sample 13, we define the system’s Hamiltonian and the initial
state in the WaveguideQED.jl framework. We see that extending to multiple waveguides amounts to creating
a waveguide-basis with two waveguides WaveguideBasis(2,2,times) and addressing the different modes
in the basis is just indexing the waveguide operators by, for example, w†

R =create(bw,1). We also define
two initial states; a single-photon Gaussian pulse and a two-photon Gaussian pulse, as studied previously
in chapter 3. In Fig. 4.4, we vary the pulse width σ and plot the transmitted two-photon wavefunction
ξ
(2)
tt (t1, t2), where the subscripts t here denotes that both photons are propagating in a transmitted state.

For the two-photon state, this is the right propagating state after the interaction: ξ(2)tt (t1, t2) = ξ
(2)
RR(t1, t2).

In ref. [3], the scattered two-photon wavefunction is shown to factorize as ξ(2)RR(t1, t2) = ξ
(1)
R (t1)ξ

(1)
R (t2) +

N(t1, t2), where ξ(1)R (t1) denotes the single-photon scattered wavefunction and N(t1, t2) describes the non-
linear interaction between the two-photon pulse and the emitter. We can thus characterize the effect of this
non-linearity by considering the single-photon product state ξ(2)tt (t1, t2) = ξ

(1)
R (t1)ξ

(1)
R (t2) corresponding to

measuring correlations between two separate single-photon pulses.
In Fig 4.4, the single-photon product state and two-photon wavefunction are seen to be similar for narrow
pulses. The emitter is unable to interact with the pulse effectively due to its short duration, and no appre-
ciative non-linearity arises. As the width increases, a distinct difference, however, emerges. Similar to the
scattering of the cavity, destructive interference leads to a reflection of the single-photon pulse, thus leading
to a cross-like structure. For the two-photon pulse, we, however, have stimulated emission, which initially
leads to a bird-like structure. For an even larger width σ = 10/γ, the diagonal shape indicates that the
two photons arrive almost exclusively as a pair, showing a strong temporal correlation due to stimulated
emission.
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Figure 4.4: Upper panel (red): The product of two transmitted one-photon wavefunctions |ξ(1)t (t1)ξ
(1)
t (t2)|2

from a single-photon Gaussian input state for varying widths of the Gaussian pulse σ. Lower panel (blue):
Same as the upper panel but for a two-photon Gaussian input state. For ease of comparison, all contour
plots have been normalized by dividing with largest value: max(|ξ(1)t (t1)ξ

(1)
t (t2)|2) and max(|ξ(2)tt (t1, t2),

respectively.

So far, this is all qualitatively very similar to the scattering of the emitter in the single-sided case. However,
a clear distinction is seen if we consider not only the transmitted wavefunction but also the reflected wave-
function ξ(2)rr (thus occupying the left propagating mode after the scattering) and partially reflected partially
transmitted wavefunction ξ

(2)
rt . Here, ξ(2)rt describes the amplitude of one photon in the reflected mode and

one photon in the transmitted mode |1i⟩r |1j⟩t. In Fig. 4.5, we show these three scattered wavefunctions for
a single-photon and two-photon Gaussian pulse for a width σ = 1. In the two-photon case, the reflected
wavefunction ξ(2)rr shows a dip along the diagonal, showing that two photons cannot be reflected simultane-
ously. This is exactly the opposite case of the transmitted wavefunction, where stimulated emission leads to
simultaneous photon emission and, thus, a strong diagonal.
In the single-photon pulse, there is no dip in the diagonal as the separate pulses are both able to be reflected.
As for the two-photon partially reflected, partially transmitted wavefunction, we see a highly asymmetric
wavefunction, showing the time-ordering of the process: We will not see a photon in the reflected channel if
we did not first observe a photon in the transmitted channel. For the single-photon pulse, no such restriction
occurs because we are here comparing two separate pulses.

Page 29 of 57



Master’s Thesis 4.3. Input Output Relations

0 10
0

5

10

15

t 2
/
σ

Two-Photon

0 10

Single-Photon

0.000

0.025

0.050

λ
2 i
|φ
i,
tt
(t

)|
2

λ 2
1 = 0.15
λ 2

2 = 0.1
λ 2

3 = 0.0

Two-Photon
λ 2

1 = 0.15
λ 2

2 = 0.0
λ 2

3 = 0.0

Single-Photon

0 10
0

5

10

15

t 2
/
σ

0 10
0.00

0.05

0.10

λ
2 i
|φ
i,
rr

(t
)|

2

λ 2
1 = 0.07
λ 2

2 = 0.01
λ 2

3 = 0.0

λ 2
1 = 0.37
λ 2

2 = 0.0
λ 2

3 = 0.0

0 10
t1/σ

0

5

10

15

t 2
/σ

(a)

0 10
t1/σ

0 10
t/σ

0.0

0.2
λ

2 i
|φ
i,
rt
(t

)|
2

λ 2
1 = 0.63
λ 2

2 = 0.03
λ 2

3 = 0.0

(b)

0 10
t/σ

λ 2
1 = 0.47
λ 2

2 = 0.0
λ 2

3 = 0.0

0.00
0.11
0.22
0.33
0.44
0.55
0.66
0.77
0.88
0.99

|ξ
(2

)
tt

(t
1
,t

2
)|

2

0.00
0.11
0.22
0.33
0.44
0.55
0.66
0.77
0.88
0.99

|ξ
(2

)
rr

(t
1
,t

2
)|

2

0.00
0.11
0.22
0.33
0.44
0.55
0.66
0.77
0.88
0.99

|ξ
(2

)
rt

(t
1
,t

2
)|

2

Figure 4.5: (a) Two-photon wavefunctions ξ(2)ij (t1, t2) for width σ = 2/γ with {i, j} ∈ {t, r} describing
the wavefunction of both photons being reflected, being transmitted, and one photon being reflected one
photon being transmitted, respectively. The left column shows the scattered two-photon wavefunction, while
the right shows the single-photon product state ξ(2)ij (t1, t2) = ξ

(1)
i (t1)ξ

(1)
j (t2). All contour plots have been

normalized so that the largest value corresponds to unity. (b) The three highest populated modes ϕ(t) of the
decomposed two-photon wavefunctions. Obviously, the single-photon product state only has one populated
decomposed mode ϕ(t).

In Fig. 4.5, we show the SVD of the wavefunctions and the occupation of the respective decomposed wave-
functions ϕ. Note that the singular values λ2i denote the weight of the decomposed function of the total
scattered state. Thus

∑
i,µ λ

2
i,µ = 1, where µ ∈ {tt, rr, rt} is the index of the transmitted-transmitted,

reflected-reflected, reflected-transmitted state. The single-photon pulse is, by definition, only composed of
a single product state, and thus only one relevant orthonormal wavefunction ϕ shows up for each scattered
wavefunction. For the two-photon case, we see several relevant orthonormal wavefunctions similar to what
was seen in ch. 3. The evidence of stimulated emission is seen clearly, as the total population of the two
photons being reflected is significantly reduced with a population of approximately 0.08 in the two-photon
case vs. 0.37 in the single-photon case, respectively. Similarly, there is an increase in both photons being
transmitted with 0.1 + 0.15 = 0.25 vs. 0.15. Also, due to emitter saturation, we see an increase in the first
photon being reflected and the second transmitted with 0.66 vs. 0.48.

4.3 Input Output Relations

If we now want to consider how waveguide modes can interact directly to form, for example, a partially
transmitting element, we now need to define how they interact with each other. In ref. [29], they show that
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fundamental input-output relations can be derived from the Hamiltonian:

H = Hs +

N∑
i=1

∫
dνh̄νw†

i (ν)wi(ν) +

N∑
i=1

h̄
√
γi

∫
dν√
2π

(
w†

i (ν)a+ a†wi(ν)
)
+
∑
i ̸=j

h̄Vij

∫
dν√
2π

∫
dν′√
2π
w†

i (ν)wj(ν
′),

(4.4)
where wi(ν) is the annihilation operator for waveguide mode i with frequency ν, γi is the coupling between
a local system with Hamiltonian Hs and waveguide mode i, and Vi,j = Vj,i is the unitless coupling between
waveguide modes (notice how dνdν′w†

i (ν)wj(ν
′) has units of inverse time). N is here the total number of

waveguide modes. The input-output relations are here given as [29]:

d

dt
a = −i [a,Hc]− Σa+ kTWin

Wout (t) = CWin(t) + a(t)d
(4.5)

where

Win =


win,1(t)
win,2(t)

...
win,N (t)

 , Wout =


wout,1(t)
wout,2(t)

...
wout,N (t)

 (4.6)

are vectors of the input waveguide operators before having interacted with the system and after having
interacted, respectively. Σ describes a self-energy correction due to the interaction with the waveguides,
and k = d is the effective coupling between the waveguides and quantum system. C describes the direct
coupling between the waveguides. Indeed, if we had no coupling with the quantum system, the output field
would just be Wout = CWin. All of these relations can be defined in terms of the coupling between the
waveguides V and between the waveguides and quantum system Γ

V =


0 V1,2 · · · V1,N
V2,1 0 · · · V2,N

...
...

. . .
...

VN,1 VN,2 · · · 0

 , Γ =


γ1
γ2
...
γN

 (4.7)

as:

C ≡
(
I− i

2
V

)(
I+

i

2
V

)−1

, d = k ≡ −i
(
I+

i

2
V

)−1

Γ, Σ ≡ 1

2
ΓT

(
I+

i

2
V

)−1

Γ (4.8)

From this, it is evident that the coupling with the system k = d is not independent of the waveguide coupling
V. As we shall see, this can be interpreted as the waveguide coupling V altering the local density of optical
states and thus changing the coupling between the waveguides and local system.
The input-output relations are defined in the Heisenberg picture, and describe how the operators transform
under the interaction. The equivalent in the Schrodinger picture (and thus later on time-bin picture) is that
the input state transforms as (for simplicity we consider a single-photon input state):

|ψ⟩in =
∑
i

∫
dt′ξin,i(t

′)w†
i (t

′) |∅⟩ → |ψ⟩out =
∑
i

∫
dt′ξout,i(t

′)w†
i (t

′) |∅⟩ (4.9)

with ξout,i(t) =
∑

j Ci,jξin,j(t) + diψC(t) where ψC(t) is the amplitude of the cavity.
As we will see, we cannot simply adopt the Hamiltonian in eq. (4.4) to the time-bin picture. In collision
models, which the framework is based on, the baths (which, in this case, is the waveguide) are not allowed
to interact internally. We will later solve this by an effective renormalization, and this is discussed in
sec. 4.5. For now, it is still instructive to consider the Hamiltonian in eq. (4.4) and transform it into the
time-bin picture to see where the model breaks down. As it turns out, we can get the correct results if we
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do not consider coupling to another quantum system. When another quantum system is introduced, the
renormalization of the coupling with the system is, however, not captured correctly. As shown in app .A.1,
transforming the Hamiltonian in eq. (4.4) into the time-bin picutre leads to the Hamiltonian Hk for time-bin
k:

Hk = Hs − h̄ωsa
†a+

N∑
i=1

h̄
√
γi/∆t

(
w†

k,ia+ a†wk,i

)
+
∑
i̸=j

h̄Vij/∆tw
†
k,iwk,j (4.10)

where ωs is the frequency around which the waveguide pulses are centered. Note, however, that in deriving
the above time-bin Hamiltonian, we approximated:∫ tn

tn−1

dt′w†
i (t

′)wj(t
′) ≈ 1√

∆t

∫ tn

tn−1

dt′w†
i (t

′)
1√
∆t

∫ tn

tn−1

dt′wj(t
′) = w†

i,nwj,n (4.11)

which is not obvious whether is true and likely is the source of failure, as we shall see later. Conceptually,
it corresponds to having the two waveguides interacting only at a single point in space and, therefore, also
in time. This is also illustrated in Fig. 4.1, where two waveguides interact and form a beamsplitter. In the
following, we thus consider no local system (Hs = 0) with two waveguide modes a and b (see app. A.3 for a
derivation of the general case), and the Hamiltonian is:

Hk,int = h̄V/∆t(w†
k,bwk,a + w†

k,awk,b) (4.12)

where wk,a/b here is the waveguide operator of waveguide mode a or b at time-bin k, and V is the interaction
between waveguide modes a and b.
The input-output relations for the above interaction can be derived by considering how the operator at
time-bin k evolves. Since the Hamiltonian is constant within each time-bin and since we are only interacting
with one time-bin at a time, we can write the time-evolution operator for time-bin k as:

U(tk, tk +∆t) = exp

[
− i

h̄

∫ tk+∆t

tk

Hk,intdt
′

]
= exp

(
−iV (w†

k,bwk,a + w†
k,awk,b)

)
(4.13)

In the Heisenberg picture, we will thus have the following transformation after the interaction (see appendix
A.3):

wk,a(tk +∆t) = U†(tk, tk +∆t)wk,aU(tk, tk +∆t) = cos(V )wk,a − i sin(V )wk,b (4.14)

Similarly, we have:
wk,b(tk +∆t) = cos(V )wk,b − i sin(V )wk,a (4.15)

This is exactly the beamsplitter transformation [30], and we see that for a 50:50 beamsplitter, we should
choose Va,b = π/4. The coupling matrix C can thus be expressed as:

C =

(
cos(V ) −i sin(V )

−i sin(V ) cos(V )

)
(4.16)

We here note that the input-output relations calculated from (4.8) would give [28]:

C =
1

1 +
(
V
2

)2
(

1−
(
V
2

)2 −iV
−iV 1−

(
V
2

)2
)

(4.17)

We thus see, that according to this we should choose V = 2/(1+
√
2) to have a balanced beamsplitter. This

is obviously different from the above and the discrepancy can most likely be explained by the assumption
of eq. (4.11) not being valid. Nevertheless, we might still be able to simulate the same physics although
we have to choose a different V to realize the same configuration (V = π/4 for a beamsplitter instead of
V = 2/(1 +

√
2)).

In the following, we confirm that the derivations of input-output relation in eq. (4.16) from the time-bin
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Hamiltonian (4.10) are correct and we get the expected output relations. We consider the situation also
depicted in Fig. 4.2, where we have an initial one-photon Gaussian state in waveguide mode a. We then let
waveguide mode a and b interact with a varying interaction strength V from 0 to π through the Hamiltonian
defined in eq. (4.12). The total population of waveguide a and b:

∑
k ⟨ψ|w

†
k,a/bwk,a/b |ψ⟩ after the interaction

is shown in Fig. 4.6, and we see that the population of waveguide a follows cos(V )
2 while the population of

waveguide b follows sin(V )
2. This is as expected since

|ψ⟩ =
∑
k

√
∆tξ(1)a (tk) |1k⟩a |∅⟩b

BS−−→ |ψ⟩BS =
∑
k

√
∆t cos(V )ξ(1)a (tk) |1k⟩a |∅⟩b−i

√
∆t sin(V )ξ(1)a (tk) |∅⟩a |1k⟩b

(4.18)
and thus

∑
k ⟨ψ|BS w

†
k,awk,a |ψ⟩BS = cos(V )

2∑
k ∆t|ξa(tk)|

2 and
∑

k ⟨ψ|BS w
†
k,bwk,b |ψ⟩BS = sin(V )

2∑
k ∆t|ξa(tk)|

2

The code for setting the simulation up is shown in Code Sample 14. Here, we create the basis for the ef-
ficient representation of multiple waveguides in line 3 and operators associated with waveguides a and b,
respectively, in lines 4-7. Finally, we define the initial state in line 10 and solve the evolution in line 11.

1 Nphoton = 1 #Number of total excitaitons
2 NWaveguide = 2#Number of waveguides
3 bw = WaveguideBasis(Nphoton,Nwaveguide,times)
4 wda = create(bw,1) #Index 1 for waveguide a

5 wa = destroy(bw,1)
6 wdb = create(bw,2) #Index 2 for waveguide b

7 wb = destroy(bw,2)
8 V = pi/4 #pi/4 for balanced beamsplitter
9 H = im*V/dt*(wda*wb - wdb*wa)

10 psi = onephoton(bw,1,xi,times,2,5) #Index 1 to create excitaiton in waveguide a

11 psi_out = waveguide_evolution(times,psi,H)

Code Sample 14: Code for simulating interactions between two waveguides,

Another example is in Fig. 4.7, where we consider the initial two-photon state in waveguide a: |ψ⟩ =∑
k

∑
j≥k ∆tξ

(2)(tk, tj) |1k, 1j⟩a |∅⟩b with ξ(2)(tk, tj) = ξ(1)(tk)ξ
(1)(tj) being a gaussian product state defined

in eq. (3.3). Here, we choose V = π/2 and thus swap the two-photon state from being initially in waveguide
a to being in waveguide b after the interaction. The Hamiltonian in eq. (4.10) thus produced the correct
physics if we consider a different V and only consider the waveguides themselves. However, as we shall see in
the next section, when we combine the waveguide interaction with a local quantum system, the self-energy
correction due to the waveguide interaction is not predicted correctly.
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Figure 4.6: Population of waveguide a and b:
∑

k ⟨ψ|w
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k,a/bwk,a/b |ψ⟩ after interacting for varying coupling

strengths V . The initial state is a single-photon Gaussian state in waveguide a.
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Figure 4.7: Depiction of two-photon state in waveguide mode a and b, before and after interacting respec-
tively. The initial state is a Gaussian two-photon product state in waveguide mode a, and the interaction
strength is V = π/2 meaning that we swap the excitation from waveguide mode a to waveguide mode b. All
plots have been normalized by max(ξ(2)(t1, t2)) of the initial state.

4.4 Waveguide Interactions

We now revisit the scattering of the emitter considered in Sec. (4.2), but with V ̸= 0, meaning that we
have a scattering element in the waveguide. Such a scattering element could occur due to a defect in the
waveguide but also from a purposefully engineered design (such as two terminating waveguides), see for
example photonic crystal fano-lasers [31, 32]. Either way, an interesting effect of introducing such a defect is
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a change in the local density of optical states. This can in turn lead to a change in the emitter lifetime [28].
This change in the emitter-lifetime can be seen if we consider the self-energy in eq. (4.8). Immediately, it
is clear that the interactions between waveguides change the emitter decay rate as the real part of the self-
energy Σ describes the decay rate and it depends on the coupling V. If we consider the same configuration

as in sec. 4.2, we have Γ =

(√
γL√
γR

)
=

(√
γ/2√
γ/2

)
and V =

(
0 V
V 0

)
. This gives the self-energy:

Σ = γ/2

(
1

1 + (V/2)2
− iV

2(1 + (V/2)2)

)
(4.19)

We see that in the limit of V = 0 and thus no interacting waveguides, we recover Σ = γ/2 as expected
(the emitter population will decay with γ). For V ̸= 0 the self-energy also carries an imaginary factor,
corresponding to a frequency shift of emitted photons and the decay rate will also be reduced. We can
observe this frequency shift and lifetime increase in the emission spectrum of the emitter.
In standard cavity quantum electrodynamics, the emission spectrum of an emitter can be calculated from
the Wiener-Kinchen theory and the correlation function [33]:

S(ω) = γ

∫ ∫
dtdτ

〈
a†(t+ τ)a(t)

〉
e−iτω (4.20)

where a here is the cavity annihilation operator and γ the coupling to the environment. If we consider
an initially excited emitter |ψ⟩ (0) = σ† |0⟩, we will have equal emission into the two waveguides and only
have single-photon states of the form |ψ⟩ (t→ ∞) = 1√

2

(∫
ξ(t′)w†

L(t
′) |∅⟩+

∫
ξ(t′)w†

R(t
′) |∅⟩

)
. The emission

spectrum in either waveguide is then equivalent SL(ω) = SR(ω) = S(ω) and is the Fourier transform of the
time wavefunction:

S(ω) = 2π|ξ(ω)|2 =

∣∣∣∣∫ dtξ(t)e−iωt

∣∣∣∣2 (4.21)

This is evident if we consider no input field since wout(t) =
√
γa(t) and thus inserting in 4.20 we get:

S(ω) =

∫ ∫
dtdτ ⟨w(t+ τ)w(t)⟩ e−iτω =

∫ ∫
dtdτξ∗(t+ τ)ξ(t)e−iτω = (4.22)

1

2π

∫ ∫ ∫ ∫
dtdτdω′dω′′ξ∗(ω′)ξ(ω′′)e−it(ω′′−ω′)te−iτ(ω−ω′) (4.23)

= 2π

∫ ∫
dω′dω′′ξ∗(ω′)ξ(ω′′)δ(ω′′ − ω′)δ(ω − ω′) = 2π|ξ(ω)|2 (4.24)

In Fig 4.8(a), we consider the emission spectrum S(ω) of an initially excited emitter coupled to two waveg-
uides with the same rate γ/2 and for varying waveguide interaction strength V . As V is increased, we see
the effect of the waveguide interaction as a shift in the center frequency. The Full Width Half Max (FWHM)
which is related to the emitter emission rate is also seen to decrease for larger V as was expected from the
change in the self-energy given by eq. (4.19). In Fig 4.8 (b)-(c) we plot the FWHM and frequency shift calcu-
lated by fitting a Lorentzian on the spectrum in Fig 4.8(a) as a function of V . As we established in sec. 4.3,
there is not a one-to-one correspondence between the V in ref. [29] and V in our Hamiltonian in eq. (4.3).
Indeed, it was established in sec. 4.3 that we should choose V = π/4 for an even beamsplitter and V = π/2
for total reflection whereas in ref. [29] they find V = 2/(1 +

√
2) and V = 2, respectively. This discrepancy

would be okay as long as the results for the same physical system are the same. For total reflection V = 2,
the self-energy in eq. (4.19) predicts an emitter emission rate decrease of 2Re(Σ(2))/(γ/2) = 1/2, however,
as is seen in Fig 4.8, the emission rate is found to decrease by only ≈ 0.8. A similar, albeit not as large
deviation, is also seen in the frequency shift in Fig. 4.8. This shows a fundamental problem with the time-
binned picture. The interaction terms V/∆tw†

k,Rwk,L and V/∆tw†
k,Lwk,R which are defined in the time-bin

picture does not correspond to the interaction terms in the frequency based Hamiltonian in eq. (4.4). In the
next section, we propose another method for handling the input-output relations which do not involve the

Page 35 of 57



Master’s Thesis 4.5. Waveguide Interactions by Rescaling

4 3 2 1 0 1 2 3 4
ω−ωe [γ]

0

2

4

6

S
(w

) [
γ
]

aV= 0.0π
V= 0.12π
V= 0.25π
V= 0.38π
V= 0.5π

0.0 0.2 0.4
V [π]

0.6

0.8

1.0

D
ec

ay
 r

at
e 

[γ
]

b

Lor. fit: Γ
2Re(Σ(V ′))

0.0 0.2 0.4
V [π]

0.4

0.2

0.0

Fr
eq

. s
hi

ft
 [γ

]

c

Lor. fit: ω0

Im(Σ(V ′))

Figure 4.8: (a) Spectrum as defined in (4.21) for different waveguide couplings V . (b) The decay rate
(FWHM) of the Lorentzian spectrum in (a) as a function of V . The real part of the self-energy Re(Σ(V ′))
is also plotted for V ′ = {0, 2/(1 +

√
2), 2} but shown at the points V = {0, π/4, π/2} (for comparison at

points with equal input-output relations ). (c) The frequency shift of the Lorentzian in (a) as a function of
V . Im(Σ(V ′)) is also shown at the same points as in (b).

waveguide interaction terms (and thus V = 0), but instead a rescaling of the waveguide-emitter coupling.

4.5 Waveguide Interactions by Rescaling

Another approach to model the waveguide interactions is to simulate the dynamics without the waveguide
interactions and then enforce the input-output relations post-simulation. Indeed, it is argued in ref. [29]
that the system dynamics can be calculated with an effective Hamiltonian Heff = Hc − iΣa†a. In a
similar manner, we can omit the waveguide interaction terms if we rescale the waveguide-emitter coupling
Γ̃ = (I+ i

2V)−1Γ. Since the emitter-waveguide coupling now can be complex, we have to enforce a Hermitian
Hamiltonian by including complex conjugate terms in the coupling:

H = Hs +

N∑
i=1

∫
dνh̄νw†

i (ν)wi(ν) +

N∑
i=1

h̄

∫
dν√
2π

(
Γ̃∗
iw

†
i (ν)a+ Γ̃ia

†wi(ν)
)

(4.25)

where Γ̃i is the i’th element of Γ̃. Notice also that we no longer include waveguide interaction terms in the
Hamiltonian. This modification would give a self-energy correction:

Σ̃ =
1

2
Γ̃†Γ̃ =

1

2
ΓT

(
(I+

i

2
V)−1

)†

(I+
i

2
V)−1Γ =

1

4

(
(I+

i

2
V)−1 +

(
(I+

i

2
V)−1

)†
)

= Re(Σ) (4.26)

where we used that C† = C∗ and that (I + i/2V)−1 = 1/2(I + C). With the normalized coupling, we
thus recover the real part of the self-energy correction. We can then explicitly include the imaginary part
by adding a detuning term to our system Hamiltonian: H̃c = Hc + a†aIm(Σ). With this, the modified
input-output relations become:

d

dt
a = −i

[
a, H̃c

]
− Re(Σ)a+ k̃TWin (4.27)

W̃out (t) = C̃Win(t) + a(t)d̃ (4.28)

where d̃ = −i
((

I+ i
2V
)−1
)∗

Γ, k̃ = −i
((

I+ i
2V
)−1
)
Γ, and C̃ = I. Eqs. (4.27) and (4.28) do, however,

not fulfill the constraints that ensure flux conservation and time reversal symmetry. Specifically, k̃ = d̃ is
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Figure 4.9: Same as Fig 4.8, but calculated using the rescaling method explained in sec. 4.5

not satisfied. This can, however, be restored if we multiply eq. (4.28) with C and we thus arrive at:

CW̃out (t) = CWin(t) + a(t)k̃ (4.29)

where we used that Cd̃ = −i/2C(I + C∗) = k̃. If we thus define CW̃out ≡ Wout, we can simulate the
dynamics of the system with the rescaled couplings and system Hamiltonian H̃ but with no waveguide
coupling V = 0, to obtain W̃out . After the simulation, we then apply C to get Wout. Since we are working
in the Schrodinger picture, our output state will be |ψ⟩out =

∑
i

∫
W̃ †

out,i |∅⟩ and we thus apply C† to the
output state such that: C† |ψ⟩out =

∑
i,j

∫
C†

i,jW̃
†
out,i |∅⟩ =

∑
i

∫
W †

out,i |∅⟩. This is shown for a single-photon
state but can also be generalized to two-photon states.

Using this approach, we are able to predict the correct increase in emitter lifetime and shift, as is shown in
Fig. 4.9. However, this does not prove that we are able to correctly capture the scattering of an incoming
wavepacket. To prove this, we consider how a Gaussian pulse scatters off the emitter for V = {0, 2/(

√
2+1), 2}

corresponding to the case considered in sec. 4.2, a 50:50 beamsplitter, and a fully reflecting scattering element.
This configuration is also studied in detail in Ref. [28]. In Fig 4.10, we consider a pulse with a width of
σ̃ = 1.14(1 + (V/2)2)−1 corresponding roughly to the pulse width that excites the emitter to the maximum
possible probability of 0.4 [28]. The pulse is also detuned with a frequency of ω̃ = Im(Σ) corresponding
to the shift in the emitter emission due to the scattering element V. We show the time wavefunction ξ(t),
frequency wavefunction ξ(ω), and the excitation probability as a function of time. We see that except for
different widths of the emitted field, the wavefunctions are equivalent for V = 0 and V = 2, except that the
transmitted and reflected fields are swapped. In the case of a beamsplitter V = 2/(1+

√
2), the output fields

are asymmetric in frequency space but with the same excitation probability of exactly 0.5. This asymmetry
is particularly interesting as it leads to a Fano resonance where there is a sharp drop in the transmission
of different frequencies. We show this in Fig. 4.11, where we plot the ratio between the amplitude of the
input state ξ(ω) and the scattered state in the reflected and transmitted mode, respectively. We see that
for frequencies around ω ≈ −1/2γ, we have total reflection, and for frequencies ω ≈ 1/2γ, we have total
transmission. These results agree with the results obtained from analytically derived scattering matrices in
ref. [28].
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Figure 4.10: Column (a): The time-wavefunction ξ(t) as a function of time. Column (b) The frequency
wavefunction ξ(ω), notice that the frequency axis is shifted with the frequency ω̃ = Im(Σ) arising from the
waveguide interactions. Column (c) the population of the emitter, left, and right propagating fields. The first
row shows the case of V = 0 corresponding to no scattering element, the second row shows V = 2/(1 +

√
2)

corresponding to a beamsplitter, and the third row V = 2 corresponding to a fully reflecting element.

We have thus shown that we can model few-photon transport in waveguides with internal coupling. This
is a valuable extension of the collision optics picture as it can allow a fundamental study of the transport
properties of different waveguide geometries. We showed that allowing for direct interactions between the
waveguide modes in the Hamiltonians leads to errors in self-energy changes of the local emitter system.
Rather we found that we can stay within the limitations of collision optics by renormalizing the coupling
and then ensure the correct waveguide coupling post-simulation. With the numerical approach implemented
here, it is simple to consider more complex systems. From here, a natural extension of the study would,
therefore, be to consider how a two-photon pulse scatters on a waveguide with internal coupling and analyzing
systems where the complexity has previously prevented analytical derivations.
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Chapter 5

Waveguides with feedback

In this chapter, we consider waveguide systems with non-Markovian dynamics. Such memory effects can arise
when the emitted light is reflected back into the system or when considering two spatially separated emitters.
Waveguide systems with memory effects constitute a challenging class of problems because knowledge of the
emitted field is inherently required to capture the correct feedback. As alluded to in the introduction, many
numerical Waveguide QED approaches such as the SLH [11, 12] or master equation approaches [10] do not
describe the emitted field in its entirety. Treating feedback mechanisms in these frameworks is therefore
challenging. As also mentioned in the ch. 1, matrix-product states can therefore be used to represent the
entire state of the waveguide efficiently and allow for non-markovian effects to be introduced [15]. However,
the complexity involved with matrix-product states is substantial and it can be hard to understand the
underlying machinery. The time-binned waveguide picture employed in our framework is, on the other hand,
a simpler and more intuitive approach, where the calculations are less of a "black box". This comes with the
price of restricting the total number of excitations to two (for the moment). In the future, the total number
of photons could be extended to allow for more photons, but the numerical costs will grow quickly, and at
some point, the more efficient matrix product states will be a better solution.
In the following, we discuss how to implement these effects in the WaveguideQED.jl framework. We consider
a semi-infinite waveguide where one side has a mirror and feeds back emitted light to the system. We show
that we correctly predict known effects such as excitation trapping and also consider how single-photon and
two-photon pulses scatter.

Figure 5.1: Illustration of a two-level system coupled to a semi-infinite waveguide, where one end of the
waveguide terminates at a mirror reflecting incoming photons. The left propagating mode (red) propagates
for a time τ/2 until it gets reflected into the right propagating mode (blue) that returns to the emitter after
a total time of τ .
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5.1 Semi-Infinite Waveguide

We consider a Semi-Infinite Waveguide terminating with a mirror in one end, as also depicted in Fig. 5.1.
The mirror will here introduce a face shift ϕ, but also an excitation emitted in the left mode will, after a
delay time of τ/2, be reflected into the right mode and thus, after a total delay time of τ hit the emitter
again. The left and right propagating modes are, however, symmetrical [15], and one can instead think of a
single mode wrapping around the emitter. The waveguide is thus a "horseshoe", and the emitter couples to
two points of the horseshoe. This is also illustrated in Fig. 5.2. With this mental picture, there is only one
propagating mode, and we describe the interaction through the Hamiltonian [34]:

Hk = eiϕ
√
γ/2∆t

(
σ†wk + σw†

k

)
+
√
γ/2∆t

(
σ†wk+τ̃ + σw†

k+τ̃

)
(5.1)

where τ̃ = τ/∆t is the index necessary to introduce a time-delay of τ . Note that it is the operator wk+τ̃

that never "sees" the emitted photon again (thus corresponding to the left propagating mode in Fig 5.1),
whereas the operator wk experiences the emitted photon from τ̃ time steps ago (and thus corresponds to the
right propagating mode in Fig. 5.1). w†

k and wk thus carry the phase factor eiϕ from the mirror.

Figure 5.2: Numerical illustration of the semi-infinite waveguide, where the emitter couples to two points of
the waveguide such that previous emission re-interacts with the emitter. τ̃ = τ/∆t is here the index that
induces the time delay τ between the emission and reabsorption of the emitted pulse. The blue and red
interaction carries a phase difference of ϕ.

With the Hamiltonian in eq. (5.1), we can simulate how an initially excited emitter decays. In Code Sample
15, we show how to construct the time delayed operator wk+τ̃ . Notice the simplicity in setting up the
simulation. We define two time-delayed operators in the Hamiltonian, and suddenly we can simulate non-
Markovian effects. The rest of the code and functions used are the same as previously, allowing for a painless
user experience. This modality or separation of features also allows for great customization in the systems
that can be studied. The software is thus truly versatile and not just well-defined to solve a restricted set of
pre-defined problems.
In Fig. 5.3, we plot the population of the emitter as a function of time. We consider two mirror phases
ϕ = π and ϕ = 0 both τ = 1/γ. For reference, we also plot the case of τ = ∞, meaning no memory
effects. We see two very distinct population evolutions depending on the phase of the mirror. For ϕ = 0,
the reflected photon interferes constructively with the emission of a photon in the right propagating mode
from the emitter. This leads to a faster decay of the emitter, which is evident by comparing with the case
of τ = ∞. Thus, The emitter emits a photon that leads to stimulated emission with itself! With ϕ = π,
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we instead have destructive interference, and the excitation can never escape to the right. This leads to
excitation being trapped, and the system goes to a steady state where the emitter has a constant population
of ≈ 0.5.

1 times = 0:0.1:12 #Times for setting up waveguide basis
2 dt = times[2]-times[1]
3 be = FockBasis(1)
4 bw = WaveguideBasis(1,1,times)
5 sdw = create(be) ⊗ destroy(bw)
6 wds = destroy(be) ⊗ create(bw)
7

8 gamma = 1 #Decay rate of emitter
9 delay_time = 1 #In units of gamma

10 phi = pi #Mirror phase
11

12 #Creat delayed waveguide operator with delay keyword
13 sdw_delay = create(be) ⊗ destroy(bw;delay=delay_time/dt)
14 wds_delay = destroy(be) ⊗ create(bw;delay=delay_time/dt)
15

16 H = exp(i*phi)*sqrt(gamma/2/dt)*(sdw+wds)+sqrt(gamma/2/dt)*(sdw_delay+wds_delay)
17

18 #Operator for emitter population
19 sd = create(be) ⊗ identityoperator(bw)
20 s = destroy(be) ⊗ identityoperator(bw)
21 n = ad*a
22 function ne_exp(time,psi)
23 expect(n,psi)
24 end
25

26 psi_initial = fockstate(be,1) ⊗ zerophoton(bw) #Initial state
27 times_sim = 0:0.1:10 #Simulation time has to be smaller than times due to delay.
28 tout, ne_pi = waveguide_evolution(times_sim, psi_initial, H,fout=ne_exp)

Code Sample 15: Code for simulating delayed feedback in the waveguide illustrated in Fig. 5.2. Lines 1-6 set
up the standard waveguide basis, emitter basis, and waveguide operators. Lines 8-10 set up the parameters
for the simulation. Lines 13-14 set up the delayed waveguide operators σ†wk+τ̃ and σw†

k+τ̃ by using the
keyword delay. The rest simulates the population of the emitter.
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Figure 5.3: The population of a two-level system coupled to a semi-infinite waveguide with a mirror in one
end. The mirror is located such that a round trip from the emitter to the mirror takes τ time, and the mirror
induces a phase change of ϕ = 0 and ϕ = π, respectively. This leads to either a faster decay of the emitter or
excitation trapping, where the emitter does not decay further. The case where the mirror is placed infinitely
far away τ = ∞ is also shown for reference.

We can also simulate how an incoming single-photon Gaussian state scatters off on this system. In Fig. 5.4, we
consider an initial Gaussian single photon state: |ψ⟩in =

∑
k ξ

(1)(tk)
√
∆t |1k⟩ with ξ(1) defined in eq. (3.3).

The pulse has a width of σ = 0.5/γ, and the delay from the mirror is still τ = 1/γ. For reference, we
also show the case of a single-sided cavity (τ = 0) as studied in ch. 2 and 3. In Fig. 5.4(a), we show the
two-level-system population as a function of time. Most noticeably, we do not see an excitation trapping,
no matter the phase change of the mirror. A stronger reflection of the pulse when the mirror phase change
is ϕ = π (red) is seen as a much lower excitation probability of the emitter. The first part of the pulse here
reflects off the mirror and interferes with the later part of the pulse leading to a strong reflection. This is
evident in Fig. 5.4(b), where we consider the scattered wavefunctions. For ϕ = π, the reflected wavefunction
has a Gaussian output shape with a strongly suppressed "tail." For reference, the single-sided scattered
wavefunction (black τ = 0) shows a distorted shape with two peaks. For ϕ = 0, the single-photon output
state is even more distorted, with an extra peak arising, most likely due to multiple interactions with the
emitter.

0 2 4 6 8 10
time [1/γ]

0.0

0.2

0.4

0.6

Po
pu

la
tio

n 
of

 T
LS

(a) φ= π, τ= 1/γ

φ= 0, τ= 1/γ

τ= 0

0 2 4 6 8 10
time [1/γ]

0.0

0.5

1.0

1.5

ξ(
t)

(b)

Figure 5.4: (a) Same as Fig 5.3, but with an incoming Gaussian single-photon state with width σ = 0.5/γ.
(b) The scattered wavefunction after the incoming Gaussian pulse has interacted with the emitter and mirror.

Finally, we can instead consider a two-photon Gaussian pulse on the semi-infinite waveguide with a mirror. In
Fig 5.5(a), we show the two-photon scattered wavefunction for a two-photon Gaussian product state |ψ⟩in =∑

k

∑
j ξ

(1)(tk)ξ
(1)(tj)∆tw

†
kw

†
j |∅⟩ with the same parameters as the single-photon state. In Fig. 5.5(b), the

SVD of the scattered state is also shown. For ϕ = π, we observe excitation trapping, which is evident
from

∑
i λ

2
i ̸= 1 in the SVD. We also see that the scattered wavefunction is in a product state since only

one important SVD mode is occupied. This starkly contrasts with what is observed for ϕ = 0, where the
scattered wavefunction occupies two modes almost equally with λ21 ≈ λ22 ≈ 0.5. We furthermore see that the
wavefunction for ϕ = 0 shows almost no occupation along the diagonal, meaning that observing two photons
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simultaneously is not very likely. Compared with the single-sided case τ = 0, this is very different since
spontaneous emission here leads to a very pronounced diagonal. This again shows that the two photons for
ϕ = 0 are separated in time after the interaction.

In refs. [35, 13] the authors propose schemes for sorting and distinguishing between single-photon and two-
photon pulses. Based on the very limited study above, it is possible to imagine that similar schemes can be
devised and perhaps even improved if considering a waveguide system with feedback. Indeed, in ref. [36],
they show that time-delayed feedback from a bosonic phonon bath can help stabilize the coherence of an
emitter in an optical cavity. Similarly, it is interesting to consider whether there exists any scheme that can
take advantage of non-markovian dynamics in waveguide QED systems. In ref. [37] a scheme to generate 2D
photonic cluster states using feedback in a waveguide is, for example, proposed. Although simulating such
2D photonic cluster states might require the introduction of matrix product states, it is possible that similar
schemes involving fewer photons might be analyzed or devised with the help of the numerical framework.
Such investigations are a natural extension of the study shown here and an obvious use case for the numerical
framework presented.
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Figure 5.5: (a): The scattered two-photon Gaussian pulse for the same configuration and parameters con-
sidered in Fig. 5.3 and 5.4. In the first row, the mirror phase is ϕ = π, in the second row, it is ϕ = 0, and
in the last row, we consider no delay τ = 0 (single-sided). All contour plots have been normalized so that
the largest value is unity. (b): The SVD of the two-photon scattered state in (a). For ϕ = π, we observe
excitation trapping and thus

∑
i λ

2
i ̸= 1.
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Chapter 6

Conclusion and outlook

In conclusion, we have in this Msc. thesis successfully implemented the numerical framework Waveguide-
QED.jl for simulating waveguide Quantum Electrodynamics (QED) problems. The tool is built on top of the
QuantumOptics.jl library and maintains the excellent user experience offered by the original library. Through
convergence studies, we have demonstrated the accuracy of the framework, ensuring that it produces correct
results. Additionally, to enhance performance, we have introduced LazyOperators and discussed efficient
representations of the waveguide state.
By utilizing WaveguideQED.jl, we have studied the scattering of two-photon pulses on a cavity and an emit-
ter, reproducing recent experimental results. We demonstrate the non-linear capabilities of a single-emitter
by showing that a scattered two-photon pulse has signatures of entanglement across time due to stimulated
emission. On the contrary, scattering a two-photon pulse on a cavity does not lead to entanglement across
time, only producing a product state, revealing that the photons effectively did not interact. Furthermore,
we have described internal waveguide coupling and shown how to successfully model a defect in a waveguide
leading to partial reflection of one waveguide mode into another. We show that such a defect changes the
emission frequency and rate of a coupled emitter due to variations in the local density of optical states. We
also predict the emergence of Fano resonances under certain parameter conditions of this scattering element.
Finally, we demonstrated the framework’s capability to treat non-Markovian dynamics by considering a
semi-infinite waveguide with a mirror in one end. The emitted light is here fed back into the system leading
to a complex feedback loop. We observe excitation trapping for a mirror phase of ϕ = π, confirming other
theoretical results. We extend those studies by considering how single- and two-photon pulses scatter on the
system, where we no longer observe excitation trapping.

In essence, we have presented a versatile simulation tool that offers researchers in the field of quantum optics
a simple but powerful approach. The software interface is intuitive and will be familiar to those already
experienced with quantum optics software such as Qutip in Python, Quantum Toolbox in MATLAB, or
QuantumOptics.j in Julia. By describing the total state of the waveguide without relying on matrix-product
states, our simulation tool reduces the knowledge-barrier-to-entry, providing a transparent approach that is
less of a black box. This allows for the exploration of non-Markovian dynamics while still maintaining an
accessible framework. It is important to note that this comes with limitations, and specifically, it is, as of
now, only possible to describe up to two photons simultaneously. Although it is, in principle, possible to
extend the capabilities to allow for a larger number of photons, it comes at a significant numerical cost. In
such cases, employing matrix product states might still be a better solution at the cost of complexity.

Looking ahead, future work involves investigating the impact of non-Markovian dynamics on the preparation
and alteration of exotic photonic states. For example, 2D photonic cluster states from waveguides with
feedback have been proposed [38]. Recently, it was also studied how a single emitter can perform a two-photon
splitting operation [13]. It is here interesting to consider if any advantage can be gained by introducing non-
markovian dynamics or whether other schemes can be derived from such configurations. Furthermore, the
optimization of schemes performing nonlinear operations on the photonic state is also a promising direction.
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Indeed, the framework is based on an analytical approach, which has already been employed to optimize C-
phase gates by considering different nonlinearities [20, 21, 22]. It is here possible that by using the numerical
framework one can extend the analysis to more complex systems. Finally, the approach could also help to
solve few-photon transport problems in more complex waveguide QED systems. Again, previous analysis
has been performed using analytically derived scattering matrices [28], and with a numerical approach, it is
possible to imagine the study of more complex systems.
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Appendix A

Analytical derivations

A.1 Rotating frame

In the quantum optical collision formalisms, the Hamiltonian is transformed into an interaction picture to
introduce the notion of time bins. We consider the general Hamiltonian for N waveguides interacting with
a local quantum system Hs with the annihilation operator a (for an emitter system this would instead be
σ) [29]:

H = Hs +

N∑
i=1

∫
dνh̄νw†

i (ν)wi(ν) +

N∑
i=1

h̄
√
γi

∫
dν√
2π

(
w†

i (ν)a+ a†wi(ν)
)
+
∑
i ̸=j

h̄Vij

∫
dν√
2π

∫
dν′√
2π
w†

i (ν)wj(ν
′),

(A.1)
where wi(ν) is the annihilation operator for a mode in waveguide i with frequency ν, γi is the coupling
between the local system and waveguide i, and Vi,j = Vj,i is the coupling between waveguides. If we move
into an interaction picture with regards to H0 = h̄ωsa

†a+ h̄
∑N

i=1

∫
dννw†

i (ν)wi(ν), the waveguide operators
transform as:

eiH0t/h̄wi(ν)e
−iH0t/h̄ = wi(ν)− itνwi(ν) +

(−itν)2

2!
wi(ν) + · · · = wi(ν)e

−iνt (A.2)

and the system operators likewise as:

eiH0t/h̄ae−iH0t/h̄ = ae−iωst (A.3)

In the interaction picture, the transformed Hamiltonian H̃ then becomes [39]:

H̃ = eiH0t/h̄He−iH0t/h̄ −H0 = Hs − h̄ωsa
†a+

N∑
i=1

h̄
√
γi

∫
dν√
2π

(
w†

i (ν)e
i(ν−ωs)ta+ a†wi(ν)e

−i(ν−ωs)t
)

(A.4)

+
∑
i ̸=j

h̄Vij

∫
dν√
2π

∫
dν′√
2π
w†

i (ν)e
iνtwj(ν

′)e−iν′t, (A.5)

If we introduce the Fourier transformed waveguide operator wi(t) =
∫

dν√
2π
wi(ν)e

−i(ν−ωs)t the above simpli-
fies to:

H̃ = Hs − h̄ωsa
†a+

N∑
i=1

h̄
√
γi

(
w†

i (t)a+ a†wi(t)
)
+
∑
i̸=j

h̄Vijw
†
i (t)wj(t), (A.6)
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Notice that for the waveguide interaction term, we inserted e−iωsteiωst = 1. Also, we see that the waveguide
pulse has a frequency centered around ωs. If we instead wanted to describe a waveguide pulse centered around
ωw and a system with frequency ωs we would transform using H0 = h̄ωwa

†a+
∑N

i=1

∫
dνh̄νw†

i (ν)wi(ν) which
would lead to a term like δa†a in the system Hamiltonian Hs, where δ = ωs − ωw.
In the collision framework, we then interpret equation (A.6) as describing an interaction with photon bins.
This can be understood by considering how the unitary evolution operator evolving from a time tn−1 to a
time tn where tn − tn−1 = ∆t looks like:

U(tn−1, tn) = exp

−i
∫ tn

tn−1

dt′Hs − ωsa
†a+

N∑
i=1

√
γi

(
w†

i (t
′)a+ a†wi(t

′)
)
+
∑
i ̸=j

Vijw
†
i (t

′)wj(t
′)

 (A.7)

(A.8)

If we now introduce a discretized operator wn,i =
1√
∆t

∫ tn
tn−1

dt′wi(t
′) that satisfies the commutation relation:[

wn,i, w
†
n′,j

]
= 1

∆t

∫ tn
tn−1

dt′
∫ t′n
tn′−1

dt′′[wi(t
′), wj(t

′′)] = 1
∆t

∫ tn
tn−1

dt′
∫ t′n
tn′−1

dt′′δ(t′ − t′′)δi,j = δn,n′δi,j , we can
write the evolution operator as (we assume that the system Hamiltonian is time-independent for the sake of
simplicity, but it is by no means a requirement):

U(tn−1, tn) = exp

−i∆tHs −∆tωsa
†adt′ +

√
∆t

N∑
i=1

√
γi

(
w†

n,ia+ a†wn,i

)
+∆t

∑
i ̸=j

Vijw
†
n,iwn,j

 (A.9)

(A.10)

Notice that if we take the ∆t outside, we get:

U(tn−1, tn) = exp

−i∆t

Hs − ωsa
†adt′ +

N∑
i=1

√
γi/∆t

(
w†

n,ia+ a†wn,i

)
+
∑
i̸=j

Vijw
†
n,iwn,j

 (A.11)

(A.12)

We thus have a rescaled Hamiltonian:

Hs − h̄ωsa
†a+

N∑
i=1

h̄
√
γi/∆t

(
w†

n,ia+ a†wn,i

)
+
∑
i ̸=j

h̄Vijw
†
n,iwn,j (A.13)

that leads to a constant evolution within each time bin. We could also have arrived at this Hamiltonian by
introducing the discretized operators as a transformation of the continuous: w(k∆t) → wk√

∆t
.

If we rescale Vij , we see that we recover the beamsplitter transformation. One caveat, however, applies, since
we made the following approximation when we discretized the interaction:∫ tn

tn−1

w†
i (t

′)wj(t
′) ≈

∫ tn

tn−1

w†
i (t

′)

∫ tn

tn−1

wj(t
′) = ∆tw†

n,iwn,j (A.14)

whether this approximation is accurate is not obvious, but we do see that we recover the unitary transfor-
mation of a beamsplitter with it. In sec. 4.4 and 4.5, we discuss the possible problems with making this
approximation and possible solutions to it.
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A.2 Analytical solution to single-photon scattering

In sec. 2.2, we derive the following differential equation for the scattering of a single photon on a cavity:

dψ1(t)

dt
= −(iδa +

γ

2
)ψ1(t) +

√
γξ(1)(t) (A.15)

The general solution for this differential equation is given as [40]:

ψ1(t) = e−(iδa+
γ
2 )t

[
ψ1(0) +

∫ t

0

e−(iδa+
γ
2 )tξ(s)ds

]
(A.16)

In sec. 3.1, we consider a Gaussian input state with ξ(1)(t) =
√

2
σ

(
log(2)

π

)1/4
exp

(
− 2 log(2)(t−t0)

2

σ2

)
and

ψ1(0) = 0. Inserting, we thus have the integral:

ψ1(t) =

√
2

σ

(
log(2)

π

) 1
4
∫ t

0

e−(iδa+
γ
2 )t exp

[
−2 log(2)

σ2
(s− t0)

2

]
ds (A.17)

Using, ∫ t

0

e−a(s−t0)
2+bsds =

√
πe

b2

4a+bt0

2
√
a

(
erf
(
2a(t− t0)− b

2
√
a

)
+ erf

(
2at0 + b

2
√
a

))
(A.18)

together with the input-output relation ξout(t) = ξin(t)−
√
γψ(t) we get:

ξ
(1)
out(t) = ξ

(1)
in (t)−√

γ

√
πe

b2

4a+bt0

2
√
a

(
erf
(
2a(t− t0)− b

2
√
a

)
+ erf

(
2at0 + b

2
√
a

))
(A.19)

with a = 2 log(2)/σ2 and b = iδ + γ/2. Which is also the result in eq. (3.4).

A.3 Waveguide Interaction

In chapter 3, we consider how multiple waveguides interact, and in this appendix, we elaborate on some of the
derivations. We consider two waveguides labeled a and b, which interact through the following Hamiltonian:

Hint(t) =
∑
k

fk(t)Hk =
∑
k

fk(t)
h̄V

∆t

(
w†

k,awk,b + w†
k,bwk,a

)
=
∑
k

fk(t)
h̄V

∆t
Ok (A.20)

where fk(t) is as defined as in eq. (2.10) and Ok =
(
w†

k,awk,b + w†
k,bwk,a

)
. We notice that

[
Hint(t), wk,a/b

]
=

0 unless tk < t < tk +∆t. The equation of motion of the operators wk,a and wk,b are thus:

dwk,a/b

dt
=

{
− i

h̄

[
wk,b,

h̄V
∆tOk

]
, if tk < t < tk +∆t

0, otherwise
(A.21)

Thus for all times t < tk where have wk,a/b(t) = wk,a/b, while after the time window of tk < t < tk +∆t the
evolution is given by the unitary operator:

U(tk, tk +∆t) = exp

[
− i

h̄

∫ tk+∆t

tk

Hint(t
′)dt′

]
= exp

[
− i

h̄
∆t

h̄V

∆t
Ok

]
= exp [−iV Ok] (A.22)
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we thus have that the operator wk,a(tk + ∆t) after the interaction (where the derivative is zero and it no
longer changes) is:

wk,a(tk +∆t) = U†(tk, tk +∆t)wk,aU(tk, tk +∆t) = exp [iV Ok]wk,a exp [−iV Ok] (A.23)

We can then use the Baker-Hausdorf lemma [30]:

eiλABe−iλA = B + iλ[A,B] +
(iλ)2

2!
[A, [A,B]] +

(iλ)3

3!
[A, [A, [A,B]]] + ... (A.24)

together with the following commutators:

[O,wk,a] =
[
w†

k,awk,b + w†
k,bwk,a, wk,a

]
=
[
w†

k,awk,b, wk,a

]
=
[
w†

k,a, wk,a

]
wk,b = −wk,b (A.25)

[O,wk,b] = −wk,a (A.26)

which gives:

wk,a(tk +∆t) = wk,a − iV wk,b +
(iV )2

2!
wk,a −

(iV )3

3!
wk,b + · · · (A.27)

= wk,a(1−
V 2

2!
+ · · · ) + wk,b(−iV + i

V 3

3!
+ · · · ) = cos(V )wk,a − i sin(V )wk,b (A.28)

and similarly:

wk,b(tk +∆t) = cos(V )wk,b − i sin(V )wk,a (A.29)

Notice that if we instead had chosen the interaction Hamiltonian:

Hint(t) =
∑
k

fk(t)
h̄iV

∆t

(
w†

k,bwk,a − w†
k,awk,b

)
=
∑
k

fk(t)
ih̄V

∆t
Qk (A.30)

with QK = w†
k,bwk,a − w†

k,awk,b and consequently [Qk, wk,a] = −wk,b and [Qk, wk,b] = wk,b , which would
then give:

wk,a(tk+∆t) = exp [−V Qk]wk,a exp [V Qk] = wk,a+V −V
2

2!
wk,a−

V 3

3!
wk,b = cos(V )wk,a+sin(V )wk,b (A.31)

wk,b(tk +∆t) = cos(V )wk,b − sin(V )wk,a (A.32)

We can derive similar input-output relations for the more general case where we interact with a quantum
system with an arbitrary number of waveguides. We write the general Hamiltonian in eq. (4.10) as:

Hk = Hs +Hk,sb +Hk,b (A.33)

where Hs is Hamiltonian of the quantum system Hamiltonian, Hk,sb =
∑N

i=1 h̄
√
γi/∆t

(
w†

k,ia+ a†wk,i

)
the

interaction with the system, where a is the annihilation of the quantum system (for a two-level system, σ
would be a more appropriate symbol), and γi defines the interaction strength between the quantum system
and the corresponding waveguide mode i. Hk,b =

∑
i̸=j h̄Vij/∆tw

†
k,iwk,j defines the interaction between the

waveguides modes i and j. The time-evolution operator is now given as:

U(tk, tk +∆t) = exp

[
− i

h̄

∫ tk+∆t

tk

[Hs +Hsb +Hb]dt
′

]
= e[−i∆t/h̄[Hs+Hsb+Hb]] (A.34)

This form is much more complicated and will, in general, lead to complex self-energy corrections, this is
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clear if we expand the above exponential using the Zassenhaus formula (in the following we omit a factor of
∆t/h̄ and absorb it into a normalized Hamiltonian H̃ = ∆t/h̄H):

U(tk, tk +∆t) = e−i[H̃s+H̃sb+H̃b] = e−iH̃be−i[H̃s+H̃sb]e1/2[H̃b,H̃sb]ei/6[H̃b,[H̃b,H̃sb]]e−1/24[[[H̃sb,H̃b],H̃b],H̃b] · · ·
(A.35)

= e−iH̃be−i[H̃s+H̃sb]e−iH̃eff (A.36)

where it was used that [Hb, Hs] = 0 and also that [Hb, Hbs] will only generate terms of the type aw†
k,µ and

a†wk,µ and so [[Hb, Hbs], Hbs] = 0. The infinite series will serve as a self-energy correction to the waveguide-
system interaction Heff , but the input-output relation will still just be given by e−H̃b . The input-output
relation can be calculated from the commutator:

[wk,µ, Hb] =
∑
ν ̸=µ

−i/∆tVµ,νwk,ν (A.37)

if we introduce the vector W =


wk,1

wk,2

...
wk,N

 whereN is the number of waveguides, and V =


0 V1,2 · · · V1,N
V2,1 0 · · · V2,N

...
...

. . .
...

VN,1 VN,2 · · · 0


we can write all commutator relations as:

[W, Hb] = −i/∆tVW (A.38)

and the waveguide operators thus transform unitary evolution as:

ei∆tHbWe−i∆tHb = W + i∆t[Hb,W]− ∆t2

2!
[Hb, [Hb,W]] + · · · = W + VW + V2/2!W + · · · = exp(V)W

(A.39)
and we will thus have the total transformation:

U(tk, tk +∆t)†WU(tk, tk +∆t) = eiH̃eff ei[H̃s+H̃sb]eiH̃bWe−iH̃be−i[H̃s+H̃sb]e−iH̃eff (A.40)

= e−iH̃eff e−i[H̃s+H̃sb] exp(V)We−i[H̃s+H̃sb]e−iH̃eff (A.41)

We thus see that if we did not have any local system, the waveguide operators would transform as Wout =
W(t+∆t) = CW(t) with C = exp(V).
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Code

B.1 Two-photon routine

The following shows the two-photon annihilation routine. Lines 1-9 are equivalent to the one-photon routine
to perform actions like wk |1k⟩ = |∅⟩. Line 10 calls, twophoton_destroy!, which in lines 14-16 loop
horizontally over the two-photon state (see fig. 3.5). Similarly, lines 17-19 loop vertically, while lines 21-22
treat the special case of the diagonal, where a factor of

√
2 has to be applied.

1 function waveguide_mul!(result,a::WaveguideDestroy{B,B,2,1},b,alpha,beta) where {B}
2 if iszero(beta)
3 fill!(result, beta)
4 elseif !isone(beta)
5 rmul!(result, beta)
6 end
7 timeindex = a.timeindex
8 nsteps = a.basis_l.nsteps
9 @inbounds result[1] += alpha*a.factor*b[timeindex+1]

10 twophoton_destroy!(view(result,2:1:nsteps+1),b,alpha*a.factor,timeindex,nsteps,nsteps+1)
11 return
12 end
13 function twophoton_destroy!(result,b,alpha,timeindex,nsteps,offset)
14 @simd for i in 1:timeindex-1
15 @inbounds result[i] += alpha*b[offset + twophoton_index(i,nsteps,timeindex)]
16 end
17 @simd for i in timeindex+1:lastindex(result)
18 @inbounds result[i] +=
19 alpha*b[offset + twophoton_index(timeindex,nsteps,i)]
20 end
21 @inbounds result[timeindex] += sqrt(2)*alpha*b[offset +
22 twophoton_index(timeindex,nsteps,timeindex)]
23 end

Code Sample 16: Code for the two-photon annihilation multiplication routine.
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B.2 Lazy Tensor routine

The following recursive loop shows the main principle behind how the LazyTensor routine is run.

1 function recursive_tensor(result,op,input,alpha,beta,N,dim,i_operator,I,strides,shape)
2 if dim<N+1
3 if dim != i_operator
4 for j in 1:shape[dim]
5 J += strides[dim]*(j-1)
6 return recursive_tensor(result,op,input,N,dim+1,i_operator,I,strides,shape)
7 end
8 return recursive_tensor(result,op,input,alpha,beta,N,dim+1,i_operator,I,strides,shape)
9 end

10 mul!(view(result,I:strides[i_k]:I+strides[i_k]*(shape[i_k]-1)),
11 op.operators[i_operator],
12 view(input,I:strides[i_k]:I+strides[i_k]*(shape[i_k]-1)),alpha,beta)
13 end

Code Sample 17: Code that demonstrates the main principle of the LazyTensor recursive loop.

The counter dim keeps track of the current dimension and is incremented throughout the recursive loop, to
go over all dimensions. When we have looped over all dimensions dim = N+1, and we proceed to the last
part of the code, where the multiplication is performed. i_operator is the index of the operator applied
being applied. shape contains the sizes of the sub-Hilbert spaces

B.3 Convergence of two-photon scattering

In sec. 3.5, we consider scattering of a two-photon pulse on a cavity and emitter. For the scattering of the
cavity, we can confirm the numerical results by doing a convergence study between the equations of motion
in eq. (2.32) and the numerical approach. The equations of motion in eq. (2.32) are also discretized because
the two-time functions ψ(0)

1 (tm, tn) and ψ
(1)
1 (tm, tn) has to be solved for each tm = 0, tm = ∆t, tm = 2∆t,

and so on. If we choose the same discretization ∆t for the equations of motion and the numerical approach,
we see in Fig. B.1 that the two methods already agree very well for large ∆t’s (probably because they are
both discretized), but as ∆t the error decreases even further.

100 101 102

1/∆t

10 5

10 4

10 3

10 2

||ξ
(2

)
N
−
ξ

(2
)

E
O
M
|| 2
/|
|ξ

(2
)

E
O
M
|| 2

Figure B.1: Relative error between the scattered two-photon wavefunction ξN and equations of motions
wavefunction ξEOM for different values of ∆t. We here defined the norm: |f |2 =

∫
dt
∫
dt′f(t, t′).
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