
Delaunay Triangulation

Daniel VandenHeuvel

December 1, 2022

Contents

1 Delaunay Triangulation 1
1.1 Directed Acyclic Graphs . 1
1.2 Triangulations . 2
1.3 The Delaunay Triangulation . 3
1.4 Data Structures for Delaunay Triangulations 4

1.4.1 The adjacent map . 4
1.4.2 The adjacent-to-vertex map . 5
1.4.3 Graph representation of a triangulation 6

1.5 Operations on Delaunay Triangulations 6
1.5.1 Useful subroutines . 6
1.5.2 Adding a triangle . 8
1.5.3 Deleting a triangle . 11
1.5.4 Splitting a triangle in the interior 15
1.5.5 Flipping an edge . 15
1.5.6 Legalising an edge . 16
1.5.7 Splitting an edge . 18
1.5.8 Point location by walking . 19
1.5.9 Triangulating convex polygons . 24

1.6 Algorithms for Computing the Delaunay Triangulation 24
1.6.1 de Berg’s randomised incremental insertion algorithm 24

Super triangle . 24
Point location . 25
The algorithm . 26

1.6.2 Bowyer-Watson algorithm . 26
Point insertion . 29
Ghost triangles . 30
Adding a point outside of the triangulation 40

i

Chapter 1
Delaunay Triangulation

This chapter discusses Delaunay triangulations and their implementation. To get familiar
with the idea, we initially implement the clearer algorithm of de Berg et al. (2008), and
then later we consider those ideas discussed by the more recent book of Cheng et al.
(2013). To implement these algorithms, we will need to first discuss some data structures.

1.1 Directed Acyclic Graphs
We start with a discussion of graphs and, in particular, directed acyclic graphs. We start
by making some definitions, following the descriptions provided by Cormen et al. (2022,
Appendix B.4) and Deo (2018) and Mehta (2018).

Definition 1.1 (Directed graph). Let G = (V, E) be some graph with vertex set V and
edge set E. This graph is a directed graph if the elements of E, called edges, are ordered
pairs rather than unordered pairs, i.e. (u, v) ∈ E and (v, u) ∈ E represent different edges
in the graph, where u, v ∈ V . We may call a directed graph a digraph for short. ■

Definition 1.2 (Acyclic graph). Let G = (V, E) be a directed graph. A sequence
(v0, v1, . . . , vk) of vertices with u = v0, u′ = vk, and (vi−1, vi) ∈ E for i = 1, . . . , k is
called a path of length k from the vertex u to the vertex u′. If v0 = vk and the path con-
tains at least one edge, then we call the path a cycle, and the cycle is simple if the vertices
v1, . . . , vk are distinct. If G contains no simple cycles, then the graph is acyclic. ■

Note that the restriction to simple paths in the above definition for an acyclic graph
does not permit non-simple cycles, since any directed graph with a cycle necessary con-
tains a simple cycle. For example, consider the cycle C = (2, 3, 6, 9, 11, 12, 6, 3, 2). This
is not simple since the vertices are not all unique after v0 = 2, but we can take a subset
of this cycle between an element and its next occurrence, such as C ′ = (6, 9, 11, 12, 6), to
obtain a simple cycle.

Definition 1.3 (Directed acyclic graph). A directed acyclic graph, or DAG, is a graph
G = (V, E) is a directed graph that is acyclic.

1. If we define the out-degree of a given node v ∈ V to be the number of edges leaving
v, i.e. the number of elements in the set {u ∈ V : (v, u) ∈ E}, and the in-degree to
similarly be the number of elements in the set {u ∈ V : (u, v) ∈ E}, then the degree
of v is defined to be its in-degree plus its out-degree. The degree of v is denoted
deg v.

1

1.2. TRIANGULATIONS 2

2. If a node v ∈ V has degree 0, it is called a leaf node.

3. The children of a node v are the nodes that v connects to, i.e. the set {u ∈ V :
(v, u) ∈ E}.

4. If the DAG has a single root, meaning a unique node from which every other node
can be reached (also called the upper-most node), then we may called the DAG a
rooted DAG. ■

For our application, we are primarily interested in the use of DAGs for point location.
We will return to DAGs once we have introduced the Delaunay triangulation, and make
their importance clear. We use SimpleGraphs.jl (Scheinerman, 2014) to implement
DAGs in Julia (Bezanson et al., 2017).

1.2 Triangulations
To introduce the Delaunay triangulation, we need to first introduce triangulations. We
follow the description given by de Berg et al. (2008).

Definition 1.4 (Maximal planar subdivision). A maximal planar subdivision is a sub-
division of the plane together with some vertex set V and edge set E such that no edge
connecting two vertices can be added without destroying the subdivision’s planarity. ■

Definition 1.5 (Triangulation). Let P = {p1, . . . , pn} be a set of points in the plane. A
triangulation of P is a maximal planar subidivision whose vertex set is P . ■

An important measure to keep track of in a triangulation is the angle-vector.

Definition 1.6 (Angle-vector). Let T be a triangulation of P , and suppose it has m
triangles. Sort the 3m angles of the triangles of T in ascending order, so that α1 · · · , α3m

denotes the resulting sequence of angles with αi ≤ αj for i < j. The angle-vector of T is
denoted A(T) = (α1, . . . , α3m). If we have two triangulations T and T ′ of P , then we say
that the angle-vector of T is larger than the angle-vector of T ′ if A(T) is lexicographically
larger1 than A(T ′), or, in other words, if there exists an i ∈ {1, . . . , 3m} such that

αj = α′
j, for all j < i, and αi > α′

i.

In this case, we write A(T) > A(T ′). ■

We are interested in finding the triangulation which maximises the smallest angle,
meaning one that maximises the angle-vector.

Definition 1.7 (Angle-optimal triangulation). A triangulation T of a set P is called
angle-optimal if A(T) ≥ A(T ′) for all triangulations T ′ of P . ■

A fundamental concept in the development of Delaunay triangulation algorithms is
the idea of an illegal edge, with the idea that we can “flip” edges in a triangulation to
continually increase the angle-vector. Such a flip is called a Lawson flip (Cheng et al.,
2013). The edge is illegal if we can increase the smallest angle, locally, by flipping that
edge.

1A vector x ∈ Rn \ {0} is said to be lexicographically positive if there is some index i ∈ {1, . . . , n}
such that xj = 0 for j < i, and xi > 0. We say that x is lexicographically greater than y if x − y is
lexicographically positive. This is a total ordering on vectors.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.3. THE DELAUNAY TRIANGULATION 3

Definition 1.8 (Illegal edge). Suppose we have a triangulation T of P , and let e = pipj

be an edge of T . This edge will be incident to two triangles pipjpk and pipjpℓ.2 Provided
these two triangles form a convex quadrilateral, we can obtain a new triangulation T ′ by
removing pipj from T and inserting pkpℓ instead. This is called an edge flip. If α1, . . . , α6
are the six angles defined by the two triangles, and α′

1, . . . , α′
6 are those by the new

triangles in T ′, then these are the only differences between A(T) and A(T ′); see Figure
1.1. If

6
min
i=1

αi <
6

min
i=1

α′
i,

then we call the edge e = pipj an illegal edge. ■

Figure 1.1: Flipping an edge.

The next lemma will give us a nice test later for checking whether a triangulation is
a Delaunay triangulation, without having to compute any angles.

Lemma 1.1 (Illegal edge criterion). Let edge pipj be incident
to triangles pipjpk and pipjpℓ, and let C be the circle through
pi, pj, and pk. The edge pipj is illegal if and only if the point
pℓ lies in the interior of C. Furthermore, if the points pi, pj,
pk, and pℓ form a convex quadrilateral and do not lie on a
common circle, then exactly one of pipj and pkpℓ is an illegal
edge. ■

Definition 1.9 (Legal triangulation). A legal triangulation is a triangulation with no
illegal edges. ■

Since legalising an edge increases the angle-vector, any angle-optimal triangulation
cannot have any illegal edges. In particular, any angle-optimal triangulation is a legal
triangulation.

1.3 The Delaunay Triangulation
Now let us introduce the Delaunay triangulation. Some of this material borrows from
Cheng et al. (2013), avoiding some of the links with Voronoi tessellations made in the
description of Delaunay triangulations by de Berg et al. (2008). We assume that the

2Unless e is an edge of the convex hull of P , in which case it is incident to only a single triangle.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.4. DATA STRUCTURES FOR DELAUNAY TRIANGULATIONS 4

points in our point sets are in general position, meaning no four points in the point set
are on a circle.

Definition 1.10 (Delaunay triangulation). Let P be a finite point set. A triangle pipjpk

is Delaunay if pi, pj, pk ∈ S and its open circumcircle, i.e. the interior of the circle through
pi, pj, pk, contains no points in P . An edge is Delaunay if its vertices are in P and it has
at least one empty open circumcircle. A Delaunay triangulation of P , denoted DT (P),
is a triangulation of P in which every triangle is Delaunay.

We note that this definition is equivalent to the definition in de Berg et al. (2008),
thanks to de Berg et al. (2008, Theorem 9.7). Remarkably, this open circumcircle property
is enough to give the following theorem.

Theorem 1.1 (Legal triangulations are Delaunay). Let P be a set of points in the plane.
A triangulation T of P is legal if and only if T = DT (P).

Not only are all legal triangulations Delaunay triangulations, but the Delaunay tri-
angulation is the triangulation that maximises the minimum angle.

Theorem 1.2 (Delaunay triangulations maximise the angle-vector). Let P be a set of
points in the plane. Any angle-optimal triangulation of P is a Delaunay triangulation of
P . Furthermore, any Delaunay triangulation of P maximises the minimum angle over
all triangulations of P .

1.4 Data Structures for Delaunay Triangulations
We maintain a set of data structures for our Delaunay triangulations. There may be some
differences across different algorithms, but here we will describe the set of data structures
common to all. To assist in our discussion, we use the triangulation in Figure 1.3 as an
example. In what follows, triangles are represented as tuples T = (i, j, k), abbreviated
as Tijk, and T is treated as being equivalent to (j, k, i) and (k, i, j). In these tuples, the
indices refer to the index of the point, e.g. Tijk means the triangle going from pi to pj to
pk, in that order. All triangles are treated as being positively oriented. Points are treated
as tuples of coordinates, and the ith point will be denoted pi = (xi, yi). Collections of
triangles will be sets, meaning a hash map that stores only the keys rather than any values,
and collections of points will be vectors. Edges are treated as tuples (i, j), abbreviated
eij, and collections of edges will also be sets. Just like with triangles, eij refers to the
edge from pi to pj (with orientation). For example, the set of triangles in Figure 1.3 is
T = {T154, T135, T146, T163, T362, T325}, the set of points is P = [p1, p2, p3, p4, p5, p6], and
e.g. the edges of T154 are e15, e54, and e41. We may also denote by V the set of vertices,
e.g. in Figure 1.3 we have V = {1, 2, 3, 4, 5, 6}.

1.4.1 The adjacent map
It turns out to be important to find, given some oriented edge (u, v), a vertex w for
which (u, v, w) ∈ T , with T denoting the set of triangles, is a positively oriented triangle.
For example, in Figure 1.3 the vertex w associated with the edge (3, 2) is w = 5, as
(3, 2, 5) is positively oriented. Note that the edge in the other direction, (2, 3), would be
associated with w = 6 instead. We define an adjacent map A such that A(u, v) = w,
where (u, v, w) is a positively oriented triangle in T , or A(u, v) = ∂ whenever (u, v) is

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.4. DATA STRUCTURES FOR DELAUNAY TRIANGULATIONS 5

1

2

3

4 5

6

Figure 1.3: An example triangulation.

either a boundary edge. If (u, v) is not an edge in the triangulation, we return A(u, v) = ∅.
For example, A(6, 2) = 3 but A(2, 6) = ∂ in Figure 1.3, and A(4, 2) = ∅. We may also
write A(euv) = A(u, v).

We represent adjacent maps as dictionaries mapping edges to vertices, being careful
with inserting and deleting edges as we update our triangulations. To accommodate
returning ∅ whenever (u, v) is not an edge, we use what is known as a DefaultDict, a
dictionary with an extra feature that returns a default value ∅ whenever it is called at a
key that does not exist. We use DataStructures.jl’s implementation of the DefaultDict
(Lin, 2013).

1.4.2 The adjacent-to-vertex map
A second data structure, less important than the adjacent map, is a map which takes
vertices w to all edges (u, v) such that (u, v, w) is a positively oriented triangle. In
particular, w maps to all (u, v) for which A(u, v) = w. This is called the adjacent-to-
vertex map, and motivated by the above relationship with the adjacent map we denote
it by A−1 so that

A−1(w) = {(u, v) : A(u, v) = w}.

For example, in Figure 1.3, we have A−1(1) = {(5, 4), (4, 6), (6, 3), (3, 5)} and A−1(5) =
{(4, 1), (1, 3), (3, 2)}. Notice that we can also use this map to obtain the boundary of
the triangulation, using the fact that A(u, v) = ∂ whenever (u, v) is a boundary edge.
In Figure 1.3, we find that A−1(∂) = {(5, 2), (2, 6), (6, 4), (4, 5)}. We may also write
A−1(w) = {(euv : A(euv) = w}.

We represent the adjacent-to-vertex map as a dictionary that maps a vertex to a
set of edges, again being careful with inserting and deleting edges as we update our
triangulations, and being especially careful of tracking boundary edges so that we can
easily obtain the boundary later.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 6

1.4.3 Graph representation of a triangulation
When we have a triangulation, we may need to know the neighbours of a point in the
triangulation, where we define the neighbourhood N (i) of a point i to be the set of all
points j such that (i, j) is an edge in the triangulation. For example, N (1) = {4, 5, 6, 3}
in Figure 1.3 and N (6) = {4, 1, 3, 2}. This is an example of an undirected graph, and to
implement it we will use SimpleGraphs.jl (Scheinerman, 2014).

1.5 Operations on Delaunay Triangulations
The methods we use for computing Delaunay triangulations rely on several individual
operations. To simplify the discussion, we will start by discussing these operations first,
and then later we will put everything together to discuss actual algorithms for computing
Delaunay triangulations. Note also that some of these algorithms may be updated slightly
later for specific algorithms, e.g. Algorithm 16 is later modified to Algorithm 22 when
discussing the Bowyer-Watson algorithm in Section 1.6.2.

1.5.1 Useful subroutines
We list below some common subroutines that we will need. We will frequently need to
test if an edge is on the boundary, and so Algorithm 1 is used to test this.

Algorithm 1 Testing if an edge is a boundary edge.
Inputs:

• An edge eij to test and an adjacent map A.
Outputs:

• Returns true if eij is a boundary edge, and false otherwise.
1: function IsBoundaryEdge(i, j, A) return A(eij) == ∂
2: end function

We will also often need to rotate a triangle based on some Boolean values. This is
useful for example if we have an edge euv that we want to perform some function on, and
we have a Boolean telling us what edge this is. Instead of writing different functions for
each possible edge, we can just rotate the triangle into a standard configuration so that
the first two vertices give this edge euv. Algorithm 2 does this rotation.

Another task that we often need to perform is that of checking if an edge actually
exists in the triangulation. This test is done in Algorithm 3.

A key predicate needed in computing triangulations is that of testing whether a point
is in a given circle. We define this in Algorithm 4. The definition of this predicate in
Algorithm 4 is that given by Cheng et al. (2013, Eq. 3.4), although we compute the sign
of the given determinant exactly using ExactPredicates.jl (Lairez, 2019).

We use a predicate IsInTriangle in Algorithm 5 to determine if a point is inside a
given triangle Tijk. In this predicate, we decide if a point is inside Tijk by seeing if it is
to the left of all the edges eij, ejk, and eki of Tijk (noting that Tijk is positively oriented).
If it is to the left of all these edges, then indeed pr is inside Tijk or on one of the edges.
The predicate we use for determining if a point pr is to the left of an edge eij is given
by IsLeftOfLine in Algorithm 7 below, making use of IsOriented in Algorithm 6. This
predicate first considers the cases for the edges on the super triangle (defined in de Berg’s

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 7

Algorithm 2 Rotating a triangle based on Boolean values.
Inputs:

• A triangle Tijk to rotate.
• Booleans bij, bjk, and bki such that only one is true.

Outputs:
• The true Boolean’s subscripts define the first two vertices, e.g. if bjk is the true

value then the function returns Tjki.
1: function RotateTriangle(bij, bjk, bki, i, j, k)
2: bij && return Tijk

3: bjk && return Tjki

4: bki && return Tkij

5: end function

Algorithm 3 Testing if an edge exists.
Inputs:

• An edge eij to test and an adjacent map A.
Outputs:

• Returns true if eij exists, and false otherwise.
1: function EdgeExists(i, j, A) return A(eij) ̸= ∅
2: end function

Algorithm 4 Testing if a point is in a circle.
Inputs:

• A point pℓ.
• A point set P and points pi, pj, pk.

Outputs:
• Returns 1 if pℓ is in the circle Cijk through pi, pj, and pk, 0 if pℓ is on Cijk, and −1

if pℓ is outside Cijk.
1: function IsInCircle(P , i, j, k, ℓ)
2: ax, ay = P(i) ▷ P(i) returns the ith point pi in the point set P ,
3: bx, by = P(j) ▷ and ax, ay = P(i) returns the x- and y-coordinates of pi.
4: cx, cy = P(k)
5: dx, dy = P(ℓ)

6: ∆ =

∣∣∣∣∣∣∣
ax − dx ay − dy (ax − dx)2 + (ay − dy)2

bx − dx by − dy (bx − dx)2 + (by − dy)2

cx − dx cy − dy (cx − dx)2 + (cy − dy)2

∣∣∣∣∣∣∣
7: return sgn(∆)
8: end function

method, Section 1.6.1), and then computes a determinant ∆ that is given by Cheng et al.
(2013, Equation 3.2). sgn(∆) = 1 means the point is to the left, sgn(∆) = 0 means the
point is on the line, and sgn(∆) = −1 means the point is to the right. We compute the
sign of ∆ exactly using ExactPredicates.jl (Lairez, 2019).

If we know that a point is on the edge of a triangle, but we do not what edge it is on,
we use Algorithm 8 to return this edge.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 8

Algorithm 5 Testing if a point is in a triangle.
Inputs:

• A triangle Tijk.
• A point set P .
• A query point pr.

Outputs:
• Returns 1 if pr is inside Tijk, 0 if pr is on Tijk, and −1 if pr is outside Tijk.

1: function IsInTriangle(i, j, k, P , r)
2: (Tijk == T−1,−2,−3) && return 1 ▷ All points are inside the super triangle.
3: ℓij = IsLeftOfLine(P , i, j, r)
4: ℓjk = IsLeftOfLine(P , j, k, r)
5: ℓki = IsLeftOfLine(P , k, i, r)
6: (ℓij == 0 || ℓjk == 0 || ℓki == 0) && return 0 ▷ Point is on an edge.
7: (ℓij == 1 && ℓjk == 1 && ℓki == 1) && return 1 ▷ Point is in the interior.
8: return −1 ▷ Point is in the exterior.
9: end function

Algorithm 6 Orientation of points.
Inputs:

• Three points a, b, c.
Outputs:

• Returns 1 if the points are a, b, c are positively oriented, −1 if negatively oriented,
and 0 if the points are collinear. Alternatively, returns 1 if c is left of the line −→

ab,
−1 if c is right of −→

ab, and 0 if the points are collinear.
1: function IsOriented(a, b, c)
2: ax, ay = a
3: bx, by = b
4: cx, cy = c

5: ∆ =
∣∣∣∣∣ax − cx ay − cy

bx − cx by − cy

∣∣∣∣∣
6: return sgn(∆)
7: end function

1.5.2 Adding a triangle
Let us first discuss the problem of adding a triangle into an existing triangulation. We
discuss this by way of example. Figure 1.4 shows a series of (not necessarily Delaunay)
triangulations. Figure 1.4a is the initial triangulation, Figure 1.4b shows the triangulation
with a new triangle added into the interior, Figure 1.4c adds a new triangle onto a single
boundary edge, and Figure 1.4d adds a new triangle onto two boundary edges. The goal in
this section is to describe the procedure for adding these new triangles, and in particular
the updating of the data structures in response to these new triangles, especially for
dealing with the boundary edges.

Let us first discuss the addition of the triangle T137 into the triangulation. We would
first update the adjacent map A so that A(e13) = 7, A(e37) = 1, and A(e71) = 3. Next,
the adjacent-to-vertex map A−1 must be updated so that A−1(1) now has e37 added into
it, A−1(3) now includes e71, and A−1(7) now includes e13. Next, we update the graph N

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 9

Algorithm 7 Testing if a point is to the left of a line.
Inputs:

• A line Lij through pi and pj, and a query point pk.
• A point set P .

Outputs:
• Returns 1 if pk is to the left of Lij, 0 if pk is on Lij, and −1 if pk is to the right of

Lij.
1: function IsLeftOfLine(P , i, j, k)
2: (i == −1 && j == −3) && return −1
3: (i == −1 && j == −2) && return 1
4: (i == −3 && j == −1) && return 1
5: (i == −3 && j == −2) && return −1
6: (i == −2 && j == −3) && return 1
7: (i == −2 && j == −1) && return −1
8: return IsOriented(P(i), P(j), P(k))
9: end function

Algorithm 8 Finding what edge of a triangle a point is on.
Inputs:

• A point pr that is on the edge of a triangle Tijk.
• A point set P .

Outputs:
• Returns the edge of Tijk that the point pr is on.

1: function FindEdge(Tijk, P , r)
2: IsLeftOfLine(P , i, j, r) == 0 && return eij

3: IsLeftOfLine(P , j, k, r) == 0 && return ejk

4: IsLeftOfLine(P , k, i, r) == 0 && return eki

5: end function

1

2

3

4 5

6

(a) Initial triangula-
tion.

1

2

3

4 5

6

7

(b) Interior addition.

1

2

3

4 5

6

7
8

(c) Single boundary
addition.

1

2

3

4 5

6

7
8

(d) Double boundary
addition.

Figure 1.4: Examples of adding triangles to an existing triangulation. The triangles
shown in blue are the new triangles being added.

so that N (1) includes 3 and 7, N (3) now includes 1 and 7, and N (7) now includes 1 and
3. Note that some of these neighbourhood connections may already be included, but our
representation of N as an undirected graph will handle any duplicates by ignoring them.
For this simple case, then, the procedure for adding a triangle Tijk is:

1: push!(T , Tijk)
2: A(eij) = k
3: A(ejk) = i

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 10

4: A(eki) = j
5: push!(A−1(i), ejk)
6: push!(A−1(j), eki)
7: push!(A−1(k), eij)
8: push!(N (k), i, j) ▷ This also does e.g. push!(N (i), k) as N is undirected.
9: push!(N (i), j)

Now consider Figure 1.4c where we are adding T528. Firstly, note that we can identify
that this triangle is being added onto a boundary edge since A(e52) = ∂. Once we have
identified that an edge of the triangle to be added forms part of the boundary, we need
to also confirm that the other edges form part of the boundary – if p8 were inside T325,
then e58 and e82 would not be boundary edges, but e52 would still be a boundary edge.
Thankfully, since we we only work with positively oriented triangles in all these codes,
there is no actual need to check this. Now, with the addition of these triangle, we apply
the same procedure as before. In addition, we must set A(e58) = ∂ and A(e82) = ∂,
and also A−1(∂) must now include e58 and e82 and exclude e52. So, assuming the single
boundary edge is eij, the code for adding a triangle Tijk that has a single boundary edge
is:

1: push!(T , Tijk)
2: A(eij) = k
3: A(ejk) = i
4: A(eki) = j
5: push!(A−1(i), ejk)
6: push!(A−1(j), eki)
7: push!(A−1(k), eij)
8: push!(N (k), i, j)
9: push!(N (i), j)

10: A(eik) = ∂
11: A(ekj) = ∂
12: push!(A−1(∂), eik, ekj)
13: delete!(A−1(∂), eij)

Now let us finally consider the case in Figure 1.4d where we are adding T623. In this
case, we once again do the same updates as before. For the boundary updates, noting
that A(e23) = A(e36) = ∂, we set A(e26) = ∂ and remove e23 and e36 from A−1(∂),
respectively. Moreover, we now include e26 in A−1(∂). Notice that while the triangle is
T623 the relevant boundary edge is e26, reversing the orientation of the edge e62 of T623.
So, letting ejk and eki be the previous boundary edges and eij the new boundary edge,
the procedure for adding a triangle Tij that has two boundary edges is:

1: push!(T , Tijk)
2: A(eij) = k
3: A(ejk) = i
4: A(eki) = j
5: push!(A−1(i), ejk)
6: push!(A−1(j), eki)
7: push!(A−1(k), eij)
8: push!(N (k), i, j)
9: push!(N (i), j)

10: A(eji) = ∂

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 11

11: push!(A−1(∂), eji)
12: delete!(A−1(∂), ejk, eki)

There is another special case to consider, which is the addition of a triangle with three
boundary edges. In this case, the triangulation we are adding onto must be empty. So,
for a triangle Tijk, we just add it as normal but also set A(ekj) = A(eji) = A(eik) = ∂
and push ekj, eji, and eik into A−1(∂). Algorithm 9 gives a complete description of our
algorithm with this special case considered, with an empty triangulation detected by
checking if |T | = 1 after Tijk is added. Note that Algorithm 9 also adds boundary points
into N (∂).

1.5.3 Deleting a triangle
The next problem is that of deleting a triangle. Ideally, the deletion of Tijk should be
the inverse of adding Tijk. With this goal in mind, let us work through the examples in
Figure 1.4. To start simple, though, we will follow the order in Figure 1.5.

1

2

3

4 5

6

7
8

(a) Initial triangula-
tion.

1

2

3

4 5

6

7
8

(b) Interior deletion.

1

2

3

4 5

6

7
8

(c) Double boundary
deletion.

1

2

3

4 5

6

7
8

(d) Single boundary
deletion.

Figure 1.5: Examples of deleting triangles to an existing triangulation. The triangles
shown in red are the triangles being deleted.

Let us start by discussing Figure 1.5b where we are deleting T137. This case of an
interior deletion is simple. First, we must delete the keys e13, e37, and e71 from A,
Similarly, we remove e13, e37, and e71 from A−1(7), A−1(1), and A−1(3), respectively.
Next, we delete 1 and 3 from N (7). For the neighbourhoods of 1 and 3, we do not delete
3 from N (1) or 1 from N (3) as we know that the other edge e31 does exist in A. So, we
have the following procedure for deleting a triangle with no boundary edges:

1: delete!(T , Tijk)
2: delete!(A, eij, ejk, eki)
3: delete!(A−1(i), ejk)
4: delete!(A−1(j), eki)
5: delete!(A−1(k), eij)
6: vji = A(eji) ̸= ∅
7: vik = A(eik) ̸= ∅
8: vkj = A(ekj) ̸= ∅
9: !vji && delete!(N (i), j)

10: !vik && delete!(N (k), i)
11: !vkj && delete!(N (j), k)

The next step is to consider deleting the triangle with two boundary edges, as indicated
in Figure 1.5c where we are deleting T528. In this case, we can do the same deletions as
before. The only new thing to note is that, as e58 and e82 are both boundary edges,

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 12

Algorithm 9 Adding a triangle into an existing triangulation.
Inputs:

• A triangle Tijk to be added into a triangulation T .
• The adjacent map A, the adjacent-to-vertex map A−1, and the graph N .

Outputs:
• An updated triangulation T that now includes Tijk.

1: function AddTriangle(i, j, k, T , A, A−1, N)
2: push!(T , Tijk)
3: bij = IsBoundaryEdge(i, j, A)
4: bjk = IsBoundaryEdge(j, k, A)
5: bki = IsBoundaryEdge(k, i, A)
6: m = bij + bjk + bki ▷ Number of boundary edges.
7: A(eij) = k
8: A(ejk) = i
9: A(eki) = j

10: push!(A−1(i), ejk)
11: push!(A−1(j), eki)
12: push!(A−1(k), eij)
13: push!(N (k), i, j)
14: push!(N (i), j)
15: m == 1 && AddBoundaryEdgesSingle(i, j, k, bij, bjk, bki, A, A−1, N)
16: m == 2 && AddBoundaryEdgesDouble(i, j, k, bij, bjk, bki, A, A−1, N)
17: |T | == 1 && AddBoundaryEdgesTriple(i, j, k, A, A−1, N)
18: end function
19: function AddBoundaryEdgesSingle(i, j, k, bij, bjk, bki, A, A−1, N)
20: u, v, w = RotateTriangle(bij, bjk, bki, i, j, k)
21: A(euw) = ∂
22: A(ewv) = ∂
23: push!(A−1(∂), euw, ewv)
24: delete!(A−1(∂), euv)
25: push!(N (∂), w)
26: end function
27: function AddBoundaryEdgesDouble(i, j, k, bij, bjk, bki, A, A−1, N)
28: u, v, w = RotateTriangle(!bij, !bjk, !bki, i, j, k)
29: A(evu) = ∂
30: push!(A−1(∂), evu)
31: delete!(A−1(∂), evw, ewu)
32: delete!(N (∂), w)
33: end function
34: function AddBoundaryEdgesTriple(i, j, k, A, A−1, N)
35: A(eji) = ∂
36: A(eik) = ∂
37: A(ekj) = ∂
38: push!(A−1(∂), eji, eik, ekj)
39: push!(N (∂), i, j, k)
40: end function

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 13

deleting them must leave the other edge as a boundary edge, namely e52. So, we must set
A(e52) = ∂ and push e52 into A−1(∂). Next, we delete A(e58) and A(e82), and remove e58
and e82 from A−1(∂). Note that in the case of a boundary edge, the edge will exist. For
example, if eji is a boundary edge, then vji will be true in Line 6 above, and so we will
not delete j from the neighbourhood of i in Line 9, when really it should be deleted. So,
assuming that eik and ekj are the two boundary edges, so that eij is the new boundary
edge, we obtain the following procedure for deleting a triangle with two boundary edges:

1: delete!(T , Tijk)
2: delete!(A, eij, ejk, eki)
3: delete!(A−1(i), ejk)
4: delete!(A−1(j), eki)
5: delete!(A−1(k), eij)
6: delete!(N (j), k)
7: delete!(N (k), i)
8: delete!(A, eik, ekj)
9: A(eij) = ∂

10: push!(A−1(∂), eij)
11: delete!(A−1(∂), eik, ekj)

Now we discuss the last case in Figure 1.5d where we are deleting the triangle T623
that has a single boundary edge. Here, we again apply the same procedure for deleting
a triangle as before, but we need to take care of the single boundary edge e26 and how it
gets converted into the boundary edges e23 and e36. So, we delete A(e26) and delete e26
from A−1(∂). Next, we set A(e23) = ∂ and A(e36) = ∂ and add e23 and e36 to A−1(∂).
So, assuming that eik is the current boundary edge so that the new boundary edges to
be added are eij and ejk:

1: delete!(T , Tijk)
2: delete!(A, eij, ejk, eki)
3: delete!(A−1(i), ejk)
4: delete!(A−1(j), eki)
5: delete!(A−1(k), eij)
6: delete!(N (k), i)
7: delete!(A, eik)
8: A(eij) = ∂
9: A(ejk) = ∂

10: push!(A−1(∂), eij, ejk)
11: delete!(A−1(∂), eik)

We note that there is also the case of deleting a triangle with three boundary edges, in
which the case the entire triangulation is that triangle. Keeping this special case in mind,
we obtain Algorithm 10. Note that IsBoundaryEdge and RotateTriangle in Algorithm 10
were defined in Algorithm 9. The protect_boundary keyword in Algorithm 10 is in case
we do not want to delete any boundary edges, for example when splitting a triangle as
discussed in the next section. Note that Algorithm 10 also adds boundary points into
N (∂).

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 14

Algorithm 10 Deleting a triangle from an existing triangulation.
Inputs:

• A triangle Tijk to be added into a triangulation T and the adjacent map A, the adjacent-
to-vertex map A−1, and the graph N .

Outputs:
• An updated triangulation T that now excludes Tijk.

1: function DeleteTriangle(i, j, k, T , A, A−1, N ; protect_boundary = false)
2: delete!(T , Tijk)
3: delete!(A, eij , ejk, eki)
4: delete!(A−1(i), ejk)
5: delete!(A−1(j), eki)
6: delete!(A−1(k), eij)
7: bji = IsBoundaryEdge(j, i, A)
8: bik = IsBoundaryEdge(i, k, A)
9: bkj = IsBoundaryEdge(k, j, A)

10: m = !protect_boundary ? bji + bik + bkj : 0 ▷ Number of boundary edges.
11: for ers ∈ {eji, eik, ekj} do
12: vrs = EdgeExists(r, s, A)
13: prs = vrs && !brs ▷ Only protect ers if it exists and is not a boundary edge.
14: !prs && delete!(N (r), s)
15: end for
16: m == 1 && DeleteBoundaryEdgesSingle(i, j, k, bji, bik, bkj , A, A−1, N)
17: m == 2 && DeleteBoundaryEdgesDouble(i, j, k, bji, bik, bkj , A, A−1, N)
18: m == 3 && DeleteBoundaryEdgesTriple(i, j, k, A, A−1, N)
19: end function
20: function DeleteBoundaryEdgesSingle(i, j, k, bji, bik, bkj , A, A−1, N)
21: u, v, w = RotateTriangle(bji, bkj , bik, i, j, k)
22: delete!(A, evu)
23: delete!(A−1(∂), evu)
24: A(evw) = ∂
25: A(ewu) = ∂
26: push!(A−1(∂), evw, ewu)
27: push!(N (∂), w)
28: end function
29: function DeleteBoundaryEdgesDouble(i, j, k, bji, bik, bkj , A, A−1, N)
30: u, v, w = RotateTriangle(bji, bkj , bik, i, j, k)
31: delete!(A, euw, ewv)
32: delete!(A−1(∂), euw, ewv)
33: A(euv) = ∂
34: push!(A−1(∂), euv)
35: delete!(N (∂), w)
36: end function
37: function DeleteBoundaryEdgesTriple(i, j, k, A, A−1, N)
38: delete!(A, ekj , eji, eik)
39: delete!(A−1(∂), ekj , eji, eik)
40: delete!(N (∂), i, j, k)
41: end function

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 15

1

2

3

4 5

6

7
89

10

(a) Initial triangula-
tion.

1

2

3

4 5

6

7
89

10

(b) Splitting of T135
about p7.

1

2

3

4 5

6

7
89

10

(c) Splitting of T614
about p9.

1

2

3

4 5

6

7
89

10

(d) Splitting of T528
about p10.

Figure 1.6: Examples of splitting triangles in the interior in an existing triangulation.
The triangles shown in blue are new triangles added after splitting.

1.5.4 Splitting a triangle in the interior
Now we consider the problem of splitting a triangle in the interior. This means taking
some triangle Tijk and a point pr in its interior. We then subdivide Tijk into the three
triangles Tijr, Tjkr, and Tkir. Figure 1.6 shows some examples of these subdivisions.
Provided our algorithms for deleting a triangle and adding a triangle are working correctly,
then this should be as simple as deleting the triangle Tijk and then adding the triangles
Tijr, Tjkr, and Tkir. There is one problem, though. Consider Figure 1.6c. If we delete
T614 and then add T469 first, then there is a hole defined by the vertices (p4, p9, p6, p1)
which causes issues later when updating the boundary accordingly. To remedy this, we
introduce into Algorithm 10 a keyword protect_boundary that will allow for the boundary
edges to be protected, noting that splitting a triangle into three will never change the
boundary. Keeping this in mind, we obtain Algorithm 11 for splitting a triangle.

Algorithm 11 Splitting a triangle in the interior.
Inputs:

• A triangle Tijk and a point pr in Tijk’s interior that will be used to subdivide Tijk

into three triangles.
• An existing triangulation T , the adjacent map A, the adjacent-to-vertex map A−1,

and the graph N .
Outputs:

• An updated triangulation T that has now split Tijk into the three triangles Tijr,
Tjkr, Tkir.

1: function SplitTriangle(i, j, k, r, T , A, A−1, N)
2: DeleteTriangle(i, j, k, T , A, A−1, N ; protect_boundary = true)
3: AddTriangle(i, j, r, T , A, A−1, N)
4: AddTriangle(j, k, r, T , A, A−1, N)
5: AddTriangle(k, i, r, T , A, A−1, N)
6: end function

1.5.5 Flipping an edge
An important operation to perform on a triangulation is that of flipping an edge, with
the aim of making it a legal edge (as discussed in the next section). If we have an edge
eij that is incident to the triangles Tikj and Tijℓ, then an edge flip of eij means replacing
the edge eij (and eji) with ekℓ (and eℓk), which also means replacing Tikj and Tijℓ with

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 16

1

2

3

4 5

6

7

8

(a) Initial triangulation.

1

2

3

4 5

6

7

8

(b) The edge e13 was flipped to
e65.

1

2

3

4 5

6

7

8

(c) The edge e41 was flipped to
e87.

Figure 1.7: Examples of edge flipping. In the last two figures, the blue triangles are the
new triangles and the red dashed line shows the position of the original edge prior to
flipping.

Tℓkj and Tℓik. Examples of some edge flips are shown in Figure 1.7. Note that this flip
only makes sense if the quadrilateral defined by (pi, pk, j, ℓ) is convex, else the new edge
will cross another and force the triangulation to no longer be planar. An edge flip can
be implemented with two DeleteTriangles and AddTriangles, making sure we use the
protect_boundary keyword in Algorithm 10 as in Algorithm 11, noting that we will never
flip a boundary edge. The algorithm that we end up with is given in Algorithm 12.

Algorithm 12 Flipping an edge.
Inputs:

• An edge eij to be flipped, assuming (pi, pk, pj, pℓ) is a convex quadrilateral, where
ℓ = A(eij) and k = A(eji).

• An existing triangulation T , the adjacent map A, the adjacent-to-vertex map A−1,
and the graph N .

Outputs:
• An updated triangulation T that has now flipped eij.

1: function FlipEdge(i, j, T , A, A−1, N)
2: ℓ = A(eij)
3: k = A(eji)
4: DeleteTriangle(i, k, j, T , A, A−1, N ; protect_boundary = true)
5: DeleteTriangle(i, j, ℓ, T , A, A−1, N ; protect_boundary = true)
6: AddTriangle(ℓ, k, j, T , A, A−1, N)
7: AddTriangle(ℓ, i, k, T , A, A−1, N)
8: end function

1.5.6 Legalising an edge
When we split a triangle into three, edges in the triangulation may no longer be Delaunay,
i.e. no longer legal. Suppose we have split some triangle Tijk into three around a point
pr, subdividing Tijk into Tijr, Tjkr, and Tkir. It is not difficult to see that the edges eri,
erj, and erk are all legal. To see this, note that Tijk is Delaunay prior to the addition of
pr. Therefore, the open circumcircle C of Tijk contains no other points in its interior. We
can shrink C to find a circle C ′ touching both i and r, and since C ′ ⊂ C we see that C ′

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 17

will also contain no points in its interior. In particular, after the addition of r, the edge
eri will be legal. We can apply the same ideas to the edges erj and erk. Thus, all the new
edges that are introduced upon splitting a triangle are legal.

To understand what edges could become illegal after adding pr, we need to understand
what can cause a previous legal edge eij to become illegal. Let Tijk and Tjiℓ be the edges
that eij is incident to (if eij is a boundary edge so that there is only one incident triangle,
it is legal as it forms part of the convex hull – unless pr is added outside of the domain;
we consider this later). The only way for eij to be illegal is if one of Tijk and Tjiℓ has
changed. To understand why it cannot be any other triangle, see that if the modification
of some other triangle were to somehow affect whether or not eij is legal, this would
imply that its open circumdisk touches both pi and pjj. But, if this triangle is not Tijk

or Tjiℓ, this circumdisk would have to contain either pk or pℓ, meaning these triangles are
not Delaunay. Thus, we need only consider the triangles incident to an edge to detect
whether it is now illegal.

Now let us bring this back to the problem of legalising an edge. The above discussion
tells us that, in the case of the new triangle in Figure 1.8, we need only consider legalising
the edges e13, e35, and e51. These edges are highlighted in Figure 1.8a. The check for
whether the edges are illegal relies on Lemma 1.1. In particular, we can check if the
edge eij, incident to triangles Tijk and Tjiℓ, is illegal by checking if pℓ is inside the circle
touching pi, pj, and pk, using a predicate IsInCircle to do this check. This predicate was
defined in Algorithm 4. If pℓ is inside this circle, the edge is illegal. In the case of Figure
1.8a, letting Cijk be the circle through pi, pj, and pk, we need to check if p6 is inside the
circle C137 for e13, if p2 is inside the circle C357 for e35, and if p4 is inside the circle C517
for e51. We show these circles in Figure 1.8b. We see in Figure 1.8b that the edge e13 is
legal as p6 is not inside C137; the edge e35 is legal since p2 is not in the interior of C357,
although p2 is circular with p3, p5, and p7, which is not a problem; the edge e51 is illegal
as p4 is inside C517.

1

2

3

4 5

6

7

(a) The addition of the point 7 splits the tri-
angle T135 into T137, T357, and T175. The blue
edges shown need to be checked in case they
are now illegal.

1

2

3

4 5

6

7

(b) The circles C137, C357, and C517 used to
test whether the edges (1, 3), (3, 5), and (5, 1)
are illegal, respectively.

Figure 1.8: Legalising a triangle after splitting.

We now need to legalise the edge e51. This is done by flipping the edge e51 to become
e41, using Algorithm 12. Once we have flipped this edge, we know that we will have the

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 18

new triangles T417 and T547, deleting T175 and T415. We therefore need to ensure that the
edges e54 and e41 are still legal, so we apply the same flipping process. This leads to the
recursive algorithm in Algorithm 13 for legalising an edge through edge flipping.

Algorithm 13 Legalising an edge.
Inputs:

• An edge eij to legalise after a point pr was added into Tijk following an application
of Algorithm 11.

• An existing triangulation T , the adjacent map A, the adjacent-to-vertex map A−1,
the graph N , and the point set P .

Outputs:
• An updated triangulation T such that eij is now legal.

1: procedure LegaliseEdge(i, j, r, T , A, A−1, N , P)
2: if IsLegal(i, j, A, P) then
3: ℓ = A(eji)
4: FlipEdge(i, j, T , A, A−1, N)
5: LegaliseEdge(i, ℓ, r, T , A, A−1, N , P)
6: LegaliseEdge(ℓ, j, r, T , A, A−1, N , P)
7: end if
8: end procedure
9: procedure IsLegal(i, j, A, P)

10: k = A(eij)
11: ℓ = A(eji)
12: e = IsInCircle(P , i, j, k, ℓ)
13: return e ≥ 0
14: end procedure

1.5.7 Splitting an edge

1

2

3

4 5

6

7
8

9

10

(a) Original triangula-
tion.

1

2

3

4 5

6

7
8

9

10

(b) Splitting the edge
e17 at p8.

1

2

3

4 5

6

7
8

9

10

(c) Splitting the edge
e35 at p9.

1

2

3

4 5

6

7
8

9

10

(d) Splitting the edge
e45 at p10.

Figure 1.9: Examples of splitting an edge. In each figure, the new edges are shown in
blue.

When we add points into an existing triangulation, issues may arise if the point to
be added is on an edge of another triangle. One algorithm we implement adds points
and then splits triangles in the interior using Algorithm 11, but this fails in this case.
When a point is on the edge, we instead make new triangles by drawing edges to the
adjacent vertices. Examples of this splitting are shown in Figure 1.9, which shows the
two different cases. In Figure 1.9b we are splitting an interior edge e17 at a point p8,

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 19

and this does not introduce any new boundary edges. Similarly, Figure 1.9c shows the
splitting of the interior edge e35 at a point p9. The next case in Figure 1.9d shows the
splitting of the boundary edge e54 at a point p10, and this introduces the new boundary
edges e4,10 and e10,5, deleting the previous boundary edge e45. Notice in this splitting
that there are two views that we could take. The first view is that the edge eij is split in
both directions, for example the splitting of e17 at p8 in Figure 1.9b connects p8 to both
p3 and p4. An alternative view is that the splitting only goes to the adjacent vertex, so
that e17 in Figure 1.9b would only be split so that p8 connects to p4, and we would have
to split e71 to get the connection with p3. This latter view will be the simplest to work
with, both for debugging and for dealing with boundary edges, and so this is the view
that we take.

Let us start by discussing the splitting of an interior edge, using Figure 1.9b as an
example. Here, p17 is split at p8, and this introduces the new triangles T184, T874, T138,
and T837, deleting the previous triangles T174 and T137 in the process. As mentioned,
though, we will only consider the new connection with the adjacent vertex p4. We can
therefore represent this splitting using one DeleteTriangles and two AddTriangles, using
the following procedure for splitting an interior edge eij about a point pr:

1: k = A(eij).
2: DeleteTriangle(i, j, k, T , A, A−1, N ; protect_boundary = true)
3: AddTriangle(i, r, k, T , A, A−1, N)
4: AddTriangle(r, j, k, T , A, A−1, N)

The protect_boundary = true case is needed when the edge is part of a boundary triangle,
as in Figure 1.9c, since the order in which we add triangles may introduce holes in the
domain temporarily; this is the same issue we had when developing Algorithm 11. This
procedure could be called on eji to get the splitting in the other direction.

Now let us consider the case of a boundary edge as in Figure 1.9d. Here, the edge
e54 is being split at p10, deleting the triangle T547 and introducing the two new triangles
T7,5,10 and T10,4,7. We can apply the same procedure as above, but we have to be careful
with the boundary edge, ensuring we delete e45 and instead replace it with e4,10 and e10,5.
This is as simple as changing the protect_boundary argument above to depend on the
boundary status of eji:

1: k = A(eij).
2: DeleteTriangle(i, j, k, T , A, A−1, N ; protect_boundary = !IsBoundaryEdge(j, i,

A))
3: AddTriangle(i, r, k, T , A, A−1, N)
4: AddTriangle(r, j, k, T , A, A−1, N)

Remember that IsBoundaryEdge is defined in Algorithm 1. To summarise, Algorithm 14
gives the algorithm for splitting an edge.

1.5.8 Point location by walking
Point location is a common problem in computational geometry, and is an essential
feature of many Delaunay triangulation algorithms. While we will discuss many methods
for point location, we delay the discussion of these methods until we discuss the specific
algorithms. Here we discuss a method that works independent of a specific algorithm.
The problem is this: Given a Delaunay triangulation DT (P) of a point set P, and a
point q ∈ R2, what triangle T ∈ DT (P) contains the point q? The solution we present to

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 20

Algorithm 14 Splitting an edge.
Inputs:

• An edge eij to split at a point pr.
• An existing triangulation T , the adjacent map A, the adjacent-to-vertex map A−1,

and the graph N .
Outputs:

• An updated triangulation T such that eij is now split at pr.
1: function SplitEdge(i, j, r, T , A, A−1, N)
2: k = A(eij).
3: DeleteTriangle(i, j, k, T , A, A−1, N ; protect_boundary = !IsBoundaryEdge(j,

i, A))
4: AddTriangle(i, r, k, T , A, A−1, N)
5: AddTriangle(r, j, k, T , A, A−1, N)
6: end function

this is the jump-and-march algorithm of Mücke et al. (1999), a specific case of what are
known as walking algorithms like those discussed by Devillers et al. (2002). We discuss
the algorithm by Mücke et al. (1999) as it requires minimal setup and is conceptually
simple, and is already in common use for example in the Triangle software (Shewchuk,
1996). An orthogonal walk may be of interest as we use exact arithmetic for our geometric
predicates, as recommended by Devillers et al. (2002), but we do not consider it here.

The essence of the jump-and-march algorithm is as follows: If P = {p1, . . . , pn} and
the query point is q, then:

1. Select m points (s1, . . . , sm) at random and without replacement from P , where
m = O(n1/3).

2. Set j = argminm
j=1 d(sj, q), where d(x, y) is the Euclidean distance between points

x and y, and set p = sj.

3. Locate the triangle T ∈ DT (P) containing q by traversing all triangles intersected
by the line segment pq.

The runtime of this algorithm for randomly distributed points is O(n1/3) (Devroye et
al., 1998). We simply use m = ⌈n1/3⌉, although a choice like m = ⌈0.45n1/3⌉ may be
reasonable for uniformly distributed point sets (Shewchuk, 1996). Algorithm 15 gives an
implementation of the first two steps of this procedure. In Algorithm 15 it is important
to note that we are actually sampling with replacement, but provided m is much smaller
than n this will not be too impactful on the algorithm. In particular, if there are n total
points to choose from and we select m points from them, the probability that all the
points are unique is

n(n − 1) · · · (n − m + 1)
nm

= Γ(n + 1)
nmΓ(n − m + 1) ∼ 1 − 1

2n1/3 + O
(1

n2/3

)
as n → ∞,

where m = n1/3. This approximation 1 − 1/2n1/3 appears to have around 10% relative
error to the true value for n ≈ 10, and around 2.8% near n = 100. So, the probability of
there being any duplicates is approximately 1/2n1/3, so the tradeoff in avoiding allocations
from having to check for duplicates is worth it for large enough n.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 21

Algorithm 15 Selecting an initial point for the jump-and-march algorithm.
Inputs:

• A query point q, a point set P , and a number of points m to sample.
Outputs:

• A vertex k to start marching from.
1: function SelectInitialPoint(P , q; m = ⌈m1/3⌉)
2: δ2 = ∞ ▷ Initialise distance at infinity.
3: k = 0 ▷ Initialise index for the loop.
4: n = |P|
5: for j ∈ {1, . . . , m} do
6: i = rand({1, . . . , n})
7: pi = P(i)
8: d2 = (pi,x − qx)2 + (pi,y − qy)2

9: if d2 < δ2 then
10: δ2 = d2

11: k = i
12: end if
13: end for
14: return k
15: end function

q

(a) An initial trian-
gulation and a query
point q.

q

(b) Randomly selected
points si and line seg-
ments −→siq.

q

(c) The triangles
stepped over are
shown in blue.

2

3

4

12

15

17

21

23

27

34

36

38

3

41

4546

48

q

(d) Zoomed in and an-
notated version of (c).

Figure 1.10: An example of point location by walking.

To give an example of this method of point location, Figure 1.10a shows an initial
triangulation and some point q inside the triangulation. This triangulation has n = 50
points, so we select m = ⌈n1/3⌉ = 4 vertices at random, giving four line segments to test
as shown in Figure 1.10b. The red line segment has the smallest length of the four, and
so we start the point location at the red vertex. We then step over triangles starting from
this red vertex until we reach q, stepping over all the triangles shown in blue in Figure
1.10c.

To discuss the implementation of this algorithm, let us consider Figure 1.10d. The
walk starts at p46, but to determine where to go we need to first find the triangle to
start in. To find this triangle, first remember that A−1(46) will give us all edges euv such
that Tu,v,46 is a positively oriented triangle, so we can loop over the elements of A−1(46).
Suppose the first triangle we try is T23,38,46. Since the edge e23,28 does not intersect −→pq,
where s = p46, we need to rotate to another triangle. The idea is to rotate around until
the orientations become opposite, so the next edge we try is e38,41. In this case we find
that the line does indeed intersect this edge, so we can start the straight line search.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 22

We traverse the triangles, keeping the edge’s endpoints on each side of the line, until we
eventually find an edge that switches the orientation of the edge relative to q.

The ideas above can be formalised with the following algorithm, following the imple-
mentation of Devillers et al. (2002). Algorithm 16 shows the procedure for finding the
triangle containing q after we have already selected a vertex k (thus p = pk) to start from,
using say Algorithm 15. Lines 2–5 select the initial triangle by randomly selecting an
edge from A−1(k). The way we step across these neighbouring triangles depends on the
orientation of pj relative to −→pq. Figure 1.11 shows how this is done. If we have selected
an edge eij, so that Tijk is positively oriented where p = pk, and if pj is to the left of
−→pq, then we will rotate around the neighbouring triangles clockwise until pi is now to the
right of −→pq, at which point −→pq must intersect the new eij. These steps are shown in Figure
1.11a–1.11c. Similarly, if pj is to the right, then we will need to rotate counter-clockwise
until pj is to the left of −→pq, as shown in Figure 1.11d–1.11f. This initialisation step is
executed in Lines 6–22 of Algorithm 16. Lines 11 and 19 are needed in the rare case that
we rotate onto a boundary edge, and so we simply restart the algorithm at the other
vertex, and similarly for Line 27.

pj

pi

pk

q

(a) O(p, q, pj) = 1 and
O(p, q, pi) = 1.

pi
pj

pk

q

(b) O(p, q, pj) = 1 and
O(p, q, pi) = 1.

pj
pi

pk

q

(c) O(p, q, pj) = 1 and
O(p, q, pi) = −1.

q

pj
pi

pk

(d) O(p, q, pi) = −1 and
O(p, q, pj) = −1.

q

pi

pjpk

(e) O(p, q, pi) = −1 and
O(p, q, pj) = −1.

pj
pi

pk

q

(f) O(p, q, pi) = −1 and
O(p, q, pj) = 1.

Figure 1.11: Example of finding the initial triangle for stepping towards q from pk = p.
The top row shows the case where we search clockwise as pj is left of −→pq, and the bottom
row shows the case where we search counterclockwise as pj is right of −→pq. The thick
blue line is the line segment −→pq and the dashed line is the line through s and q. In each
subcaption, O(a, b, c) is an abbreviation of IsOriented(a, b, c).

Once the initialisation step is complete and we have an edge eij that −→pq intersects,
the straight walk part of the algorithm begins. In Lines 23 and 24, we swap i and j so
that pi is to the left of −→pq and pj is to the left of −→pq. Lines 26–35 are what determines
the next edge to cross from eij. We first find the triangle Tijk that has eij as its edge by
getting k = A(eij). If this point pk is to the right of −→pq, then we need to swap j and k

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.5. OPERATIONS ON DELAUNAY TRIANGULATIONS 23

Algorithm 16 Point location with the jump-and-march algorithm.
Inputs:

• A vertex k to start the walk at and a query point q. See also Algorithm 15 for
choosing this vertex k randomly.

• An adjacent map A, adjacent-to-vertex map A−1, and point set P .
Outputs:

• A triangle Tijk that contains q in its interior.
1: function JumpAndMarch(k, q, A, A−1, P)
2: p = P(k)
3: eij = rand(A−1(k)) ▷ A random triangle neighbouring p.
4: pi = P(i)
5: pj = P(j)
6: if IsOriented(p, q, pj) == 1 then
7: while IsOriented(p, q, pi) == 1 do
8: j = i
9: pj = pi

10: i = A(eik)
11: i == ∂ && return JumpAndMarch(j, q, A, A−1, P)
12: pi = P(i)
13: end while
14: else ▷ IsOriented(p, q, pj) ≤ 0.
15: while IsOriented(p, q, pj) == −1 do
16: i = j
17: pi = pj

18: j = A(ekj)
19: j == ∂ && return JumpAndMarch(i, q, A, A−1, P)
20: pj = P(j)
21: end while
22: end if
23: i, j = j, i ▷ pi is left of −→pq, pj is right of −→pq.
24: pi, pj = pj, pi

25: while IsOriented(pi, pj, q) == 1 do
26: k = A(eij)
27: k == ∂ && return JumpAndMarch(i, q, A, A−1, P)
28: pk = P(k)
29: if IsOriented(p, q, pk) == −1 then
30: j = k
31: pj = pk

32: else
33: i = k
34: pi = pk

35: end if
36: end while
37: k = A(eji) ▷ Positively oriented triangle.
38: return Tjik

39: end function

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 24

since we know that pj is to the right of −→pq, and this is checked in Lines 29–31. Similarly,
Lines 33 and 34 handle the case where pk is to the left of −→pq. The core part of this loop is
the termination condition in Line 25, which says that we stop traversing the edges once
q is to the left of the edge eij. To understand this, consider for example Figure 1.11c. In
this setting, q is to the right of eij, so we need to keep searching. As soon as eij is moved
to the right of q, though, we will have passed the triangle that q is in, meaning we have
arrived at it. Hence, we stop the loop once q is to the left of eij. The final line in Line
36 just updates the found triangle so that it is positively oriented.

1.5.9 Triangulating convex polygons
We start by discussing a method for triangulating convex polygons. This will be useful
later when we discuss the problem of deleting triangles. We follow the discuss of Cheng
et al. (2013) who give an algorithm for the original algorithm by Chew (1990).

1.6 Algorithms for Computing the Delaunay Trian-
gulation

Now let us give some algorithms for computing the Delaunay triangulation. We give two
separate methods.

1.6.1 de Berg’s randomised incremental insertion algorithm
The first algorithm we consider is the algorithm described by de Berg et al. (1999). The
algorithm is a randomised incremental insertion method, where we start with an initial
triangle and then insert new points in a random order. When a new point is added,
SplitTriangle (or SplitEdge, if the new point is on the edge of an existing triangle) is
used to define new triangles, and then LegaliseEdge is used to make all the edges legal,
thus making the triangulation Delaunay. This is done until all the points have been
sorted.

Super triangle

The first issue to deal with is the initial triangle. Following de Berg et al. (1999), we
surround the points in a super triangle, a triangle that contains all the points in the
point set P . While we could handle this triangle’s vertices symbolically, for simplicity
we will actually define specific coordinates for this super triangle. Let the super triangle
be T−1,−2,−3 with vertices at p−1, p−2, and p−3. If we have n points, p1, p2, . . . , pn, to be
added, each with coordinates pi = (xi, yi), then we define

xm =
n

min
i=1

xi, xM = nmax
i=1

xi, ym =
n

min
i=1

yi, yM = nmax
i=1

yi.

With these definitions, we define a bounding box [xm, xM] × [ym, yM] for the point set.
The centroid of this bounding box is at (xc, yc) = [(xm + xM)/2, (ym + yM)/2]. If we
define δ = max{xM − xm, ym − yM}, then we define

p−1 = (xc + Mδ, yc − δ) , p−2 = (xc, yc + Mδ) , p−3 = (xc − Mδ, yc − δ) , (1.1)

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 25

where M = 27.39; this value M is just a shift that pushes the super triangle further from
the point set. These coordinates will be large enough so that, when they are removed,
the Delaunay triangulation of the original point set is obtained.

Point location

The second issue is that of point location: when we add a new point pr, we need to know
what triangle it is on (or what edge it is on) in order to know what triangle we need
to split. This can be done by using a history graph, which is a directed acyclic graph
(DAG) that tracks how the triangles in the algorithm have been split and what triangles
they became. To understand how this might work, consider Figure 1.6. In Figure 1.6b,
we have split the triangle T135 into the three triangles T137, T357, and T517. Our DAG
would thus have the nodes T135, T137, T357, and T517, and the node T137 would have the
out-neighbours T137, T357, and T517. This is useful since if we know that a point is inside
T137, and since T137, T357, and T517 are all contained inside T137, we could then search for
the point inside these smaller triangles. Therefore, we can add some additional lines of
code to Algorithm 11 for updating a given history graph G. In particular, we define the
following new method for Algorithm 11:

1: function SplitTriangle(i, j, k, r, T , A, A−1, N , G)
2: SplitTriangle(i, j, k, r, T , A, A−1, N)
3: AddNode(G, Tijr, Tjkr, Tkir)
4: AddEdge(G, Tijk, Tijr, Tjkr, Tkir)
5: end function

Here, AddNode(G, T1, T2, . . .) adds the nodes T1, T2, . . . into the graph G, and AddEdge(G,
T , V1, V2, . . .) adds the nodes V1, V2, . . . into the set of out-neighbours of T .

We can apply similar ideas to AddTriangle, FlipEdge and SplitEdge, as given below.
1: function AddTriangle(i, j, k T , A, A−1, N , G)
2: AddTriangle(i, j, k, T , A, A−1, N)
3: AddNode(G, Tijk)
4: end function
1: function FlipEdge(i, j, T , A, A−1, N , G)
2: FlipEdge(i, j, T , A, A−1, N)
3: ℓ = A(eij)
4: k = A(eji)
5: AddNode(G, Tℓkj, Tℓik)
6: AddEdge(G, Tikj, Tℓkj, Tℓik)
7: AddEdge(G, Tijℓ, Tℓkj, Tℓik)
8: end function
1: function SplitEdge(i, j, r, T , A, A−1, N , G)
2: SplitEdge(i, j, r, T , A, A−1, N)
3: AddNode(G, Tirk, Trjk)
4: AddEdge(G, Tijk, Tirk, Trjk)
5: end function

We also define a method for LegaliseEdge that includes the argument G and makes use
of the new FlipEdge that now includes an argument G.

Now let us describe how we use all these ideas for point location. Since G is acyclic,
there are no loops, and so we can search down the graph, noting that the leaf nodes of

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 26

the graph are the current triangles in the triangulation, and these leaf nodes have out
degree 0. So, we can recursively search down the DAG until finding a leaf node with out
degree 0. We will know once we have reached this node that we have found the triangle
in the current triangulation that contains the point pr, as long as we only go down nodes
that contain the point pr already. This is summarised in Algorithm 17. We note that this
procedure could be improved for example with the work of Kolingerová and Žalik (2002)
who make greater use of the geometric information available from the history provided
from the DAG.

Algorithm 17 Finding which triangle contains a point using the history graph.
Inputs:

• A point pr.
• The history graph G, the point set P , and an initial node Tijk.

Outputs:
• The triangle T in the current triangulation that contains pr, and a flag q such that

q = 1 if pr is in the interior of T , or q = 0 if pr is on an edge of T .
1: function LocateTriangle(G, P , r, i, j, k)
2: O = OutNeighbours(G, Tijk) ▷ OutNeighbours gets the set of out neighbours
3: O == ∅ && return Tijk, IsInTriangle(i, j, k, P , r)
4: for Vabc ∈ O do ▷ There will be 3 triangles in O at most
5: IsInTriangle(a, b, c, P , r) ≥ 0 && return LocateTriangle(G, P , r, a, b, c)
6: end for
7: end function

The algorithm

Now we can give the algorithm itself. This algorithm is given in Algorithm 18. The
algorithm starts by computing the coordinates of the super triangle’s vertices, and then
initialises all the data structures based on this super triangle. A random insertion order
is then obtained by selecting a random permutation of the indices {1, . . . , n}. With this
insertion order, we then loop over each index and add points to the triangulation one
at a time, first finding the triangle that contains the point and splitting the triangle
(and edge) about the point pr. At the end of the rth loop, we have the Delaunay
triangulation of {p−1, p−2, p−3, pv1 , pv2 , . . . pvr}. When we have added all n points, the
function RemoveSuperTriangle in Algorithm 19 is used to delete all triangles that have
one of the super triangle’s coordinates as one of its vertices. This is done by looping over
all the edges euv such that Tuvw ∈ T , where w ∈ {−1, −2, −3}, making use of the adjacent-
to-vertex map. In this function, we avoid the use of DeleteTriangle to avoid issues with
boundary edges, noting that a primary task of this function is to repair the convex hull
from the original super triangle’s boundary. The final result is thus DT ({p1, . . . , pn}).

1.6.2 Bowyer-Watson algorithm
We now discuss the Bowyer-Watson algorithm, introduced by Bowyer (1981) and Watson
(1981). This algorithm works similarly to de Berg’s method, with points being inserted
one at a time, but the way the triangulation is updated following the insertion of a point
is different. In this method, when a point is added into the triangulation we delete all

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 27

Algorithm 18 Computing the Delaunay triangulation with de Berg’s algorithm.
Inputs:

• A point set P = [p1, . . . , pn].
Outputs:

• A Delaunay triangulation T with adjacent map A, adjacent-to-vertex map A−1,
graph N , and history graph G.

1: function DelaunayTriangulationBerg(P)
2: Compute the coordinates p−1, p−2, p−3 of the super triangle T−1,−2,−3 using (1.1).
3: Initialise T , A, A−1, N , and G as empty data structures.
4: AddTriangle(−1, −2, −3, T , A, A−1, N , G)
5: Generate a permutation {v1, . . . , vn} of {1, . . . , n}.▷ Randomised insertion order.
6: for r ∈ {v1, . . . , vn} do
7: Tijk, q = LocateTriangle(G, P , r, T−1,−2,−3)
8: if q == 1 then ▷ pr is in the interior of Tijk

9: SplitTriangle(i, j, k, r, T , A, A−1, N , G)
10: LegaliseEdge(i, j, r, T , A−1, N , P , G)
11: LegaliseEdge(j, k, r, T , A−1, N , P , G)
12: LegaliseEdge(k, i, r, T , A−1, N , P , G)
13: else if q == 0 then ▷ pr is on an edge of Tijk

14: eij = FindEdge(Tijk, P , r) ▷ pr is on the edge eij of Tijk

15: k = A(eij)
16: ℓ = A(eji)
17: SplitEdge(i, j, r, T , A, A−1, N , G)
18: if !IsBoundaryEdge(j, i, A) then
19: SplitEdge(j, i, r, T , A, A−1, N , G)
20: end if
21: LegaliseEdge(i, ℓ, r, T , A−1, N , P , G)
22: LegaliseEdge(ℓ, j, r, T , A−1, N , P , G)
23: LegaliseEdge(j, k, r, T , A−1, N , P , G)
24: LegaliseEdge(k, i, r, T , A−1, N , P , G)
25: end if
26: end for
27: RemoveSuperTriangle(T , A, A−1, N)
28: return T , A, A−1, N , G
29: end function

the triangles whose circumdisks contain the point, thus evacuating a polygonal cavity in
the triangulation. The triangulation is then repaired by connecting the boundaries of
this polygonal cavity to the new point. Figure 1.3 gives an example of the procedure,
with Figure 1.12a showing the existing triangulation and the point p11 to be added. We
first find all triangles whose open circumdisks contain p11, as these triangles are no longer
Delaunay. We show these triangles in blue in Figure 1.12b. These triangles all need to be
deleted, evacuating the blue polygonal cavity from Figure 1.12b; note that the guarantee
that this blue region is a polygonal cavity is given by Proposition 1.1. With this region
now deleted, we connect the vertices of the polygonal cavity to the new point p11. These
new edges are shown in blue in Figure 1.12c. The two propositions below guarantee
that the evacuated cavities are star-shaped, allowing us to guarantee that all triangles

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 28

Algorithm 19 Removing the super triangle from Algorithm 18.
Inputs:

• A triangulation T , adjacent map A, adjacent-to-vertex map A−1, and graph N .
Outputs:

• An updated triangulation T with the super triangle removed.
1: function RemoveSuperTriangle(T , A, A−1, N)
2: for w ∈ {−1, −2, −3} do
3: for euv ∈ A−1(w) do
4: delete!(A, ewu, ewv, euw, evw)
5: delete!(A−1(u), evw)
6: delete!(A−1(v), ewu)
7: if u ≥ 1 && v ≥ 1 then▷ A boundary edge must have two positive indices.
8: A(euv) = ∂
9: push!(A−1(∂), euv)

10: end if
11: delete!(T , Tuvw)
12: end for
13: delete!(N , w)
14: delete!(A−1, w)
15: end for
16: delete!(A−1(∂), e−1,−3, e−3,−2, e−2,−1)
17: end function

1 2
3

4

56

7

8
9

10

11

(a) A point to be added.

1 2
3

4

56

7

8
9

10

11

(b) Triangles that are no longer
Delaunay.

1 2
3

4

56

7

8
9

10

11

(c) Updated triangulation with
p11 now included.

Figure 1.12: Process for inserting a vertex inside a triangulation with the Bowyer-Watson
algorithm. In (a), the point p11 marked in blue is to be added. In (b), we locate all
triangles whose open circumdisk contains p11 and mark them in blue. These triangles
are no longer Delaunay. (c) This is the updated triangulation, with new edges shown in
blue. This figure is based on Cheng et al. (2013, Figure 3.3).

whose open circumdisks contains the point to be added will be found by looking across
neighbouring triangles, and that the new added triangles are all Delaunay; see Cheng
et al. (2013, Proposition 3.1, Proposition 3.2).
Proposition 1.1 (Star-shaped cavity). Let u be a point to be added inside an existing
Delaunay triangulation. The union of the triangles whose open circumdisks contain u
is a connected star-shaped polygon, meaning that for every point p in the polygon, the
polygon includes the line segment pu. ■

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 29

Proposition 1.2 (The new edges are Delaunay). Let u be a point to be added inside
an existing Delaunay triangulation. Let T be a triangle that is deleted because its open
circumdisk contains u. Let w be a vertex of T . Then the edge uw is strongly Delaunay. ■

Point insertion

Let us first discuss the problem of inserting points into an existing triangulation. As we
discussed above, the method for adding a point is to remove all triangles whose open
circumdisks contain the new point, and then to connect the vertices of the resulting
evacuated polygonal cavity to the new point. How do we do this? The idea is to use a
depth-first search, as we now explain using Figure 1.12.

The first step in the procedure is to delete T9,10,8, as this is the triangle that p11 is inside
of. We next search for more non-Delaunay triangles by walking over the neighbouring
triangles. For example, if we walk across e10,8 into T8,10,4, we find that the circumdisk
of T8,10,4 contains p11, and so we delete T8,10,4 also. When we continue and walk over
e48 and e10,4, we find that the triangles T8,4,3 and T10,6,4 do not contain p11 in their
respective circumdisks. Therefore, the boundary of the evacuated polygonal cavity must
contain e4,8 and e10,4. We would then apply the same procedure to the edges e9,10 and
e8,9 to identify the remaining edges of the polygonal cavity’s boundary. We formalise
this procedure in Algorithm 20, with the procedure used for searching through the cavity
given by Algorithm 21. Note that Line 4 of Algorithm 21 first checks if the edge is a
boundary edge, noting that a boundary edge, provided we have reached such an edge
while traversing the cavity, will necessarily form the boundary of the polygonal cavity.

Algorithm 20 Inserting a vertex inside a triangulation with the Bowyer-Watson method.
Inputs:

• A vertex r to be added, known to be inside the triangle Tijk.
• An existing triangulation T , the adjacent map A, the adjacent-to-vertex map A−1,

the graph N , and the point set P .
Outputs:

• An updated triangulation T that now has u added into it.
1: procedure AddPointBowyer(r, i, j, k, T , A, A−1, N , P)
2: DeleteTriangle(i, j, k, T , A, A−1, N ; protect_boundary = true)
3: DigCavity(r, i, j, T , A, A−1, N , P) ▷ Identify other deleted triangles and
4: DigCavity(r, j, k, T , A, A−1, N , P) ▷ insert new triangles.
5: DigCavity(r, k, i, T , A, A−1, N , P)
6: end procedure

The above discussion is only valid if the point to be added is inside the existing
triangulation. What if we are adding a point outside of the triangulation? Following
Cheng et al. (2013, Section 3.4), the solution is to imagine that each boundary edge has
a third vertex at infinity, called a ghost vertex, and the resulting triangle is called a ghost
triangle. The two edges that adjoin the ghost vertex are called ghost edges. With our
existing data structures, notice that we can easily represent the ghost vertex by ∂, for
example A(eij) = ∂ could instead be interpreted as the ghost triangle Tij∂ rather than
simply saying that eij is a boundary edge (note that Cheng et al. (2013) use g to denote a
ghost vertex). One additional feature that we do need to add into our data structures is
the addition of the ghost edges into the adjacent and adjacent-to-vertex maps, i.e. edges

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 30

Algorithm 21 Digging the cavities for the Bowyer-Watson method.
Inputs:

• A vertex r being added via Algorithm 20, and an edge eij to traverse for evacuating
the polygonal cavity.

• An existing triangulation T , the adjacent map A, the adjacent-to-vertex map A−1,
the graph N , and the point set P .

Outputs:
• An updated triangulation T that has now evacuated more of the polygonal cavity

from Algorithm 20, or added a triangle onto the boundary of the cavity.
1: procedure DigCavity(r, i, j, T , A, A−1, N , P)
2: ℓ = A(eji) ▷ Tjiℓ is the triangle on the other side of the edge (i, j) from r
3: ℓ == ∅ && return ▷ The triangle has already been deleted in this case.
4: δ = ℓ ̸= ∂ && IsInCircle(P , r, i, j, ℓ)
5: if δ == 1 then
6: DeleteTriangle(j, i, ℓ, T , A, A−1, N ; protect_boundary = true)
7: DigCavity(r, i, ℓ, T , A, A−1, N , P) ▷ Recursively identify more deleted
8: DigCavity(r, ℓ, j, T , A, A−1, N , P) ▷ triangles and insert new triangles.
9: else ▷ eij is an edge of the polygonal cavity in this case.

10: AddTriangle(r, i, j, T , A, A−1, N , P)
11: end if
12: end procedure

of the form eij where i = ∂ or j = ∂. With this update, we note that A and A−1 will
now truly be inverses of each other. We also now include ∂ in N .

Ghost triangles

The issues arising from this notion of a ghost triangle require a detailed discussion. In
particular, we need to address the following issues:

1. Given a ghost triangle Tij∂, how can we define its circumdisk?

2. Given a ghost triangle Tij∂, what does it mean for a point p to be in the circumdisk
of Tij∂?

3. How can we modify our existing algorithms so that the ghost edges and ghost
triangles are explicitly added into T , A, A−1, and N ?

4. Given a point that is outside of the triangulation, how do we decide, out of all ghost
triangles, what ghost triangle has p in inside it?

5. What changes need to be made to Algorithm 21 so that it now works for points
outside the triangulation?

6. Once a triangulation has been computed, how can we efficiently remove all ghost
edges and ghost triangles? This will mostly be needed for visualisation purposes –
once this information has been removed, we would have to re-add it if we need to
do any more with the triangulation.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 31

Circumdisk of a ghost triangle Let us first consider the issue of defining a ghost
triangle’s circumdisk. Take some ghost triangle Tij∂, and let Cij∂ be a circle through
pi, pj, and p∂, with p∂ denoting the ghost vertex. Since the ghost vertex is at infinity,
this circle has infinite radius, meaning Cij∂ is a line. This line is the line ℓij through pi

and pj; note that this is a line not a line segment. With this definition, Algorithm 4 for
IsInCircle is modified as follows, making use of Algorithm 7 to see if a point is to the
left of a given line:

1: function IsInCircle(P , i, j, k, ℓ)
2: if i == ∂ then
3: return IsInOuterHalfPlane(P , j, k, ℓ)
4: else if j == ∂ then
5: return IsInOuterHalfPlane(P , k, i, ℓ)
6: else if k == ∂ then
7: return IsInOuterHalfPlane(P , i, j, ℓ)
8: end if
9: ax, ay = P(i) ▷ P(i) returns the ith point pi in the point set P ,

10: bx, by = P(j) ▷ and ax, ay = P(i) returns the x- and y-coordinates of pi.
11: cx, cy = P(k)
12: dx, dy = P(ℓ)

13: ∆ =

∣∣∣∣∣∣∣
ax − dx ay − dy (ax − dx)2 + (ay − dy)2

bx − dx by − dy (bx − dx)2 + (by − dy)2

cx − dx cy − dy (cx − dx)2 + (cy − dy)2

∣∣∣∣∣∣∣
14: return sgn(∆)
15: end function
16: function IsInOuterHalfPlane(P , v, w, ℓ) ▷ u == ∂.
17: e = IsLeftOfLine(P , v, w, ℓ)
18: if e == 0 then
19: b = PointOnSegment(P , ℓ, v, w)
20: if b == 1 then
21: return b
22: else
23: return −1
24: end if
25: else
26: return e
27: end if
28: end function
The function PointOnSegment(P , u, v, w), assuming that the points pu, pv, and pw are
collinear, returns 1 if pu on the open edge evw, 0 if pu = pv or pu = pw, and −1 otherwise.
This is implemented using sameside from ExactPredicates.jl (Lairez, 2019).

Now we can address the issue of defining what it means for a point to be inside a
ghost triangle’s circumdisk. Since the ghost vertex will be to the left of eij, or to the left
of ℓij, we can interpret the inside of the circumdisk as being the set of points to the left
of ℓij. Thus, a point p will be inside the circumdisk of Tij∂ if it is to the left of ℓij.

Updating ghost triangles in the triangulation The next issue to consider is the
modification of our existing algorithms so that we explicitly represent the ghost edges
and ghost triangles in T , A, A−1, and N . The two algorithms to consider in detail are

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 32

AddTriangle and DeleteTriangle. In the case of AddTriangle, the functions that need to
be considered for the ghost triangles are the AddBoundaryEdges function. Whenever we
update the adjacent and adjacent-to-vertex maps with the new boundaries, we just need
to extend them so that we also add in the ghost triangles appropriately. For example,
AddBoundaryEdgesSingle in Algorithm 9 becomes:

1: function AddBoundaryEdgesSingle(i, j, k, bij, bjk, bki, T , A, A−1, N ; update_ghost_edges
= false)

2: u, v, w = RotateTriangle(bij, bjk, bki, i, j, k)
3: A(euw) = ∂
4: A(ewv) = ∂
5: push!(A−1(∂), euw, ewv)
6: delete!(A−1(∂), euv)
7: push!(N (∂), w) ▷ u and v are already in N (∂).
8: if update_ghost_edges then ▷ Add Tuw∂ and Twv∂ and delete Tuv∂.
9: A(ew∂) = u

10: A(e∂u) = w
11: A(ev∂) = w
12: A(e∂w) = v
13: push!(A−1(u), ew∂)
14: push!(A−1(w), e∂u, ev∂))
15: push!(A−1(v), e∂w)
16: delete!(A−1(u), ev∂)
17: delete!(A−1(v), e∂u)
18: push!(T , Tuw∂, Twv∂)
19: delete!(T , Tuv∂)
20: end if
21: end function
The function now includes T and N in its arguments. Moreover, we include the keyword
update_ghost_edges in case we do not have to consider ghost nodes at all, which would be
useful if we are applying de Berg’s method of Algorithm 18 which still uses AddTriangle.
This keyword update_ghost_edges is also put into the new AddTriangle. Note also in
this code that we simplify in some cases, for example in Line 7 we only add w to N (∂)
rather than u, v, and w, since u and v are already boundary edges prior to the addition of
Tijk. We also do not need to delete any edges from A in this function since the previous
ghost edges, ev∂ and e∂u, still exist from the new ghost triangles Tuw∂ and Twv∂. Applying
similar ideas for the cases of two and three boundary edges, we obtain the following new
forms for AddBoundaryEdgesDouble and BoundaryEdgesTriple:

1: function AddBoundaryEdgesDouble(i, j, k, bij, bjk, bki, T , A, A−1, N ; update_ghost_edges
= false)

2: u, v, w = RotateTriangle(!bij, !bjk, !bki, i, j, k)
3: A(evu) = ∂
4: push!(A−1(∂), evu)
5: delete!(A−1(∂), evw, ewu)
6: delete!(N (∂), w) ▷ ew∂ was removed; u and v are still in N (∂), though.
7: if update_ghost_edges then ▷ Add Tvu∂ and delete Tvw∂ and Twu∂.
8: A(eu∂) = v
9: A(e∂v) = u

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 33

10: delete!(A, ew∂, e∂w) ▷ This ghost edge ew∂ is now obstructed by evu.
11: push!(A−1(v), eu∂)
12: push!(A−1(u), e∂v)
13: delete!(A−1(u), e∂w)
14: delete!(A−1(v), ew∂)
15: delete!(A−1(w), eu∂, e∂v)
16: push!(T , Tvu∂)
17: delete!(T , Tvw∂, Twu∂)
18: end if
19: end function
1: function AddBoundaryEdgesTriple(i, j, k, T , A, A−1, N ; update_ghost_edges =

false)
2: A(eji) = ∂
3: A(eik) = ∂
4: A(ekj) = ∂
5: push!(A−1(∂), eji, eik, ekj)
6: push!(N (∂), i, j, k)
7: if update_ghost_edges then ▷ Add Tik∂, Tkj∂, and Tji∂.
8: A(ei∂) = j
9: A(e∂j) = i

10: A(ej∂) = k
11: A(e∂k) = j
12: A(ek∂) = i
13: A(e∂i) = k
14: push!(A−1(i), e∂j, ek∂)
15: push!(A−1(j), ei∂, e∂k)
16: push!(A−1(k), ej∂, e∂i)
17: push!(T , Tji∂, Tik∂, Tkj∂)
18: end if
19: end function

The ideas used for extending the AddBoundaryEdges functions can be used to ex-
tend the DeleteBoundaryEdges functions. Adding a keyword update_ghost_edges to
DeleteTriangle, we now define the new methods for DeleteBoundaryEdges.

1: function DeleteBoundaryEdgesSingle(i, j, k, bji, bik, bkj, T , A, A−1, N ; update_ghost_edges
= false)

2: u, v, w = RotateTriangle(bji, bkj, bik, i, j, k)
3: delete!(A, evu)
4: delete!(A−1(∂), evu)
5: A(evw) = ∂
6: A(ewu) = ∂
7: push!(A−1(∂), evw, ewu)
8: push!(N (∂), w)
9: if update_ghost_edges then ▷ Add Tvw∂ and Twu∂ and delete Tvu∂.

10: A(ew∂) = v
11: A(e∂v) = w
12: A(eu∂) = w
13: A(e∂w) = u

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 34

14: delete!(A−1(v), eu∂)
15: delete!(A−1(u), e∂v)
16: push!(A−1(v), e∂)
17: push!(A−1(w), e∂v, eu∂)
18: push!(A−1(u), e∂w)
19: push!(T , Tvw∂, Twu∂)
20: delete!(T , Tvu∂)
21: end if
22: end function
1: function DeleteBoundaryEdgesDouble(i, j, k, bji, bik, bkj, T , A, A−1, N ; update_ghost_edges

= false)
2: u, v, w = RotateTriangle(bji, bkj, bik, i, j, k)
3: delete!(A, euw, ewv)
4: delete!(A−1(∂), euw, ewv)
5: A(euv) = ∂
6: push!(A−1(∂), euv)
7: delete!(N (∂), w)
8: if update_ghost_edges then ▷ Add Tuv∂ and delete Tuw∂ and Twv∂.
9: A(ev∂) = u

10: A(e∂u) = v
11: delete!(A, ew∂, e∂w)
12: delete!(A−1(u), ew∂)
13: delete!(A−1(v), e∂w)
14: delete!(A−1(w), e∂u, ev∂)
15: push!(A−1(u), ev∂)
16: push!(A−1(v), e∂u)
17: push!(T , Tuv∂)
18: delete!(T , Tuw∂, Twv∂)
19: end if
20: end function
1: function DeleteBoundaryEdgesTriple(i, j, k, T , A, A−1, N ; update_ghost_edges =

false)
2: delete!(A, ekj, eji, eik)
3: delete!(A−1(∂), ekj, eji, eik)
4: delete!(N (∂), i, j, k)
5: if update_ghost_edges then ▷ Delete Tji∂, Tkj∂, and Tik∂.
6: delete!(A, ei∂, e∂j, ej∂, e∂k, ek∂, e∂i)
7: delete!(A−1(j), ei∂, e∂k)
8: delete!(A−1(i), e∂j, ek∂)
9: delete!(A−1(k), ej∂, e∂i)

10: delete!(T , Tji∂, Tkj∂, Tik∂)
11: end if
12: end function

Point location The next problem to address is that of point location. That is, if we
have a point outside of the triangulation, then what ghost triangle should we say the point
lives in? To answer this question, we imagine that there is some central point pc that all
ghost edges go through. For example, pc should be the centroid of P . We illustrate this

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 35

in Figure 1.13, where we see that this choice partitions the exterior of the triangulation
into separate regions for each ghost triangle. This way, we can now uniquely define the
space that each ghost triangle occupies. For example, in Figure 1.13 we see that the point
q is in the triangle T9,10,∂ as q is to the left of e9,10, ec,10, and e9,c, where c refers to pc.

1

2

3

4

5

6

7

8

9

10

11pc

q

Figure 1.13: Representation of ghost triangles. The blue point pc is at the centroid of the
points, and the blue dashed lines show how the ghost edges are interpreted; the actual
ghost edges are those that extend outwards from the triangulation, but we connect to
the centroid to illustrate their interpretation. The point q is an example point that we
see lies in T9,10,∂.

To start, let us address the computation of this point pc. Suppose that P = {p1, . . . , pn},
so that

pc = 1
n

n∑
i=1

(xi, yi). (1.2)

The issue with this definition is that our triangulations are built incrementally, meaning
that the pc should only use as many points as is currently in the triangulation anyway.
So, pc should need to be updated as we build the triangulation. One other feature of
interest is that we will typically need to be access pc whenever an algorithm attempts
to access P(∂). So, should we just add an extra element to P and let it be indexed via
∂? This is one solution, but it may cause issues with how we enumerate our points in
code and we would have to change a lot of algorithms to work with it. Therefore, we will
instead define a mutable point (pc,x, pc,y) that we update whenever we add or remove a
point, and this point can be represented as a constant so that we do not need to add
it to P nor do we have to modify any of our existing functions, allowing P(∂) to be
mapped to pc without actually storing pc in P . The mutable point (pc,x, pc,y) in Julia is
represented as a mutable Tuple using MutableNamedTuples.jl (Protter, 2021). Notice,
though, that (1.2) would slow down the algorithm significantly if we had to constantly
re-sum all the terms, so we need a method for computing pn+1

c given pn
c and a new point

pn+1 = (xn+1, yn+1), where pm
c = m−1 ∑m

i=1(xi, yi). In fact, computing pm
c takes m + 1

operations to compute, and if we have n points in our final triangulation we will have
computed p1

c , p2
c , . . . , pn

c , thus taking ∑n
m=1(m+1) = n(n+3)/2 = O(n2) time to compute.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 36

Since our algorithm for computing the triangulation takes O(n log n) to compute (Cheng
et al., 2013, Theorem 3.7), we will have completely dominated the triangulation time by
computing this simple expression (1.2). To avoid this cost, notice that

(n + 1)pn+1
c =

n+1∑
i=1

(xi, yi) =
n∑

i=1
(xi, yi) + (xn+1, yn+1) = npn

c + (xn+1, yn+1),

so pn+1
c = (n + 1)−1(npn

c + pn+1). Notice that the inverse of this formula, pn
c = n−1[(n +

1)pn+1
c − pn+1], could be used for updating pc after deleting a point (as we discuss later).

Thus, computing pc over the cost of a single triangulation takes only O(n) time.
Now let us ensure we can correctly identify if a point is in a given ghost triangle; later

we will discuss modifications to Algorithm 16. Since our method for seeing if a point is
in a triangle just makes use of IsLeftOfLine, we only have to modify Algorithm 7. See
that if we want to see if a point is to the left of ei∂, then this is the same as seeing if a
point is to the left of eci. Similarly, to see if a point is to the left of e∂j, we just see if
it is to the left of ejc. Since pc is accessed through P(∂), we see that the coordinates of
the edge have simply been swapped in these ghost edge cases, with the ghost vertex at
infinity moved to the vertex. We thus obtain the following modification to IsLeftOfLine,
which automatically makes IsInTriangle work also:

1: function IsLeftOfLine(P , i, j, k)
2: (i == −1 && j == −3) && return −1
3: (i == −1 && j == −2) && return 1
4: (i == −3 && j == −1) && return 1
5: (i == −3 && j == −2) && return −1
6: (i == −2 && j == −3) && return 1
7: (i == −2 && j == −1) && return −1
8: if i == ∂ || j == ∂ then
9: j, i = i, j ▷ Swap i and j.

10: end if
11: return IsOriented(P(i), P(j), P(k)) ▷ P(∂) will get mapped to pc.
12: end function
Notice that we only had to add an extra case to this code, amounting to only three lines
in Lines 8–10, to make these predicates IsLeftOfLine and IsInTriangle work.

Now let us discuss how we can modify Algorithm 16 so that we can correctly work
with ghost triangles. The main issue in this case is that the point location algorithm
makes the assumption that we will eventually reach an edge that goes beyond q, as this is
when the orientation of the points will swap so that the condition in Line 25 in Algorithm
16 becomes false. Moreover, the selection of the initial triangle needs to be modified for
the case where a point is outside the triangulation.

To discuss our solution to this problem, let us first give the modified form of Algorithm
16 and then we will discuss all the new components.

This new algorithm is given in Algorithm 22. The first modification is Line 2 which
checks if the initial vertex pk is a boundary point, or if the triangulation contains ghost
triangles. The function IsBoundaryPoint checks if pk is a boundary point, defined by:

1: function IsBoundaryPoint(u, A, N)
2: if ∂ ∈ N then ▷ More efficient method if the triangulation has ghost triangles.
3: return u ∈ N (∂)
4: else ▷ If the triangulation has no ghost triangles.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 37

Algorithm 22 Point location with the jump-and-march algorithm, updated to work with
ghost triangles.

Inputs:
• A vertex k to start the walk at and a query point q. See also Algorithm 15 for

choosing this vertex k randomly.
• An adjacent map A, adjacent-to-vertex map A−1, and point set P .

Outputs:
• A triangle Tijk that contains q in its interior.

1: function JumpAndMarch(k, q, A, A−1, P)
2: if !IsBoundaryPoint(k, A, N) || !HasGhostTriangles(A, A−1) then
3: p, eij, pi, pj = SelectInitialTriangle(q, A, A−1, N , k, P)
4: else
5: eij, eedge, etri = CheckInteriorEdgeIntersections(q, A, N , k, P)
6: if etri then
7: return Tijk

8: else if !eedge then
9: eij = StraightLineSearchGhostTriangles(q, A, k, P)

10: return Tij∂

11: end if
12: p, pi, pj = P(k), P(i), P(j)
13: end if
14: while IsOriented(pi, pj, q) == 1 do
15: k = A(eij)
16: if k == ∂ then
17: if HasGhostTriangles(A, A−1) then
18: ei′j′ = StraightLineSearchGhostTriangles(q, A, i, P)
19: return Ti′j′∂

20: else
21: return JumpAndMarch(i, q, A, A−1, P)
22: end if
23: end if
24: pk = P(k)
25: if IsOriented(p, q, pk) == −1 then
26: j = k
27: pj = pk

28: else
29: i = k
30: pi = pk

31: end if
32: end while
33: k = A(eji)
34: return Tjik

35: end function

5: for v ∈ N (u) do ▷ Try and find a boundary edge with u as an endpoint.
6: IsBoundaryEdge(u, v, A) && return true
7: end for

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 38

8: return false
9: end if

10: end function
The function HasGhostTriangles checks if the triangulation contains ghost triangles, and
is defined by:

1: function HasGhostTriangles(A, A−1)
2: euv = iterate(A−1(∂)) ▷ Pick some edge from A−1(∂).
3: return EdgeExists(ev∂, A) ▷ If euv and ev∂ exist, then Tuv∂ exists.
4: end function

We need these checks because the behaviour will depend on whether or not a triangulation
has ghost triangles; triangulations computed using the Bowyer-Watson algorithm will, but
those with de Berg’s method will not. If the triangulation does have ghost edges, then the
behaviour for a boundary point differs from that for an interior point, with the latter case
being identical to the case where a triangulation has no ghost triangles. The function
SelectInitialTriangle in Line 3 is simply Lines 2–24 from the original algorithm in
Algorithm 16.

Lines 5–13 now consider the case where the triangulation has ghost triangles and the
initial vertex is on the boundary. The first step when starting from the boundary is to
see if the point is in the interior of the triangulation or in the exterior, since if it is in the
interior then we can just find some initial edge and use Algorithm 16 as usual. We do this
check in Line 5 using the CheckInteriorEdgeIntersections function, which returns eij,
eedge, and etri. This edge eij will be the interior edge that the line −→pkq intersects, or e∅∅ (an
empty edge) if no such edge exists; eedge is a Boolean that will records whether or not pkq
intersects an interior edge, i.e. !eedge would mean that q is outside of the triangulation;
etri is a Boolean that records whether or not the point q is in one of the solid triangles
(a non-ghost triangle) neighbouring pk, so that Tijk contains q, as we return in Line 7.
If !eedge is true, then we compute a boundary edge eij such that the ghost triangle Tij∂

contains q, done using the function StraightLineSearchGhostTriangles which does the
equivalent of Algorithm 16 except for ghost triangles. If etri and !eedge are both false,
then we just compute the initial points in Line 12 and proceed as usual, since q is in the
interior. This function CheckInteriorEdgeIntersections in Line 5 is defined as follows:

1: function CheckInteriorEdgeIntersections(q, A, N , k, P)
2: p = P(k)
3: i = A(ek∂) ▷ This is to the left of p.
4: pi = P(i)
5: o1 = IsOriented(p, q, pi) ▷ o1 = 1 if pi is left of −→pq.
6: for r ∈ {1, . . . , |N (k)| − 2} do ▷ |N (k)| neighbours, two are ∂ and i.
7: j = A(eki)
8: pj = P(j)
9: o2 = IsOriented(p, q, pj) ▷ o2 = 1 if pj is left of −→pq.

10: if o1o2 == −1 then ▷ Possible intersection.
11: if SegmentsMeet(p, q, pi, pj) == 1 then ▷ Do −→pq and −−→pipj intersect?
12: return eji, true, false ▷ Switch i and j so that pi is left of −→pq.
13: else if IsOriented(pj, p, q) == 1 && IsOriented(p, pi, q) == 1 then
14: return eij, false, true ▷ No intersection, but is inside Tijk.
15: else
16: return e∅∅, false, false

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 39

17: end if
18: end if
19: o1, i, pi = o2, j, p
20: end for
21: return e∅∅, false, false
22: end function
This function starts by taking the point pi that is to the left of the point pk, as done
in Lines 2–4. We then see in Line 5 if pi is to the left of −→pq. Then, looping over the
|N (k) − 2| remaining neighbours of pk, we rotate right around pk until we find an edge
eij such that pi is left of −→pq and pj is right of −→pq, or vice versa. This case means that
o1o2 = −1, as we test in Line 10. If o1o2 = −1 is true, then there are two cases:

1. First, the edge eij may actually intersect −→pq, in which case we can start the straight
line search from this edge eij. This test is done using SegmentsMeet, which is the
function meet from ExactPredicates.jl (Lairez, 2019), and returns 1 if the two
open line segments intersect in a single point, 0 if the two closed line segments
intersect in one or several points, and −1 otherwise.

2. The second case is that the edge eij does not intersect −→pq, which could mean that q
is on the other side of p away from eij, or q is on the same side as p but still away
from eij, meaning it must be inside the triangle Tijk. To differentiate between these
two cases, we first see if q is left of ejk and left of eki, as we test in Line 13, as this
implies that q must be inside Tijk. If this test is not true, then this failure along
with the first case’s failure imply that q is away from pk relative to the edge eij,
which must mean that q is outside of the triangulation as pk is a boundary point,
and so we return in Line 16.

If we never find an intersection or a triangle containing q, then the point q must be outside
of the triangulation, and so we return in Line 21.

Next, the function for jumping over ghost triangles StraightLineSearchGhostTriangles
in Line 9 of Algorithm 22 is defined by:
1: function StraightLineSearchGhostTriangles(q, A, k, P)
2: pc = P(∂) ▷ This is the centroid of P , recall.
3: i = k
4: pi = P(k)
5: ociq = IsOriented(pc, pi, q)
6: if ociq == 1 then ▷ q is left of the ghost edge through pk, so rotate left.
7: j = A(ei∂)
8: pj = P(j)
9: while IsOriented(pc, pj, q) == 1 do ▷ Until we find an intersection.

10: i = j
11: pi = pj

12: j = A(ei∂)
13: pj = P(j)
14: end while
15: return eji ▷ Swap the orientation so that eij is a boundary edge.
16: else ▷ q is right of the ghost edge through pk, so rotate right.
17: j = A(e∂i)
18: pj = P(j)

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 40

19: while IsOriented(pc, pj, q) == −1 do
20: i = j
21: pi = pj

22: j = A(e∂i)
23: pj = P(j)
24: end while
25: return eij

26: end if
27: end function
This function follows a very similar idea to that of a straight line search that we use
in Algorithm 16. We first determine if q is left or right of the ghost edge through pk,
remembering that the ghost edge is interpreted as passing through the centroid pc and
the boundary point. If q is left of this ghost edge, then we should rotate left around the
boundary until we get a ghost edge that goes past q, as this will tell us that we have
passed a ghost triangle containing q. This left rotation is done in Lines 6–15, and Line
9 is what tells us to stop rotating. Lines 16– 26 performs the right rotation. In this
function, we only return a boundary edge eij since the third vertex of the ghost triangle
will simply be ∂.

The remainder of Algorithm 22 is mostly unchanged, except we need to check for the
case where our straight line search takes us into a boundary edge, in which case the point
q is outside of the triangulation. We check this in Line 16, where we perform a straight
line search over the ghost triangles once we go past such an edge.

Adding a point outside of the triangulation

Now that we have an understanding of ghost triangles, we can consider what happens
when we try to add a point outside of a triangulation. We recall that a point p is inside
the circumdisk of a ghost triangle Tij∂ if p is to the left of the line ℓij. So, there are
two cases where a ghost triangle Tij∂ needs to be deleted after the insertion of a point p,
meaning eij is no longer a boundary edge. Following Cheng et al. (2013, Section 3.4), the
first case is where p is to the left of ℓij away from the triangulation, and the second case
is where p is on eij, in which case we should split edge into two boundary edges and also
contain with A(eji) (similar to Algorithm 18’s method for handling collinear points). We
call the union of the set of points left of ℓij and those on eij the outer halfplane of eij;
note that the outer halfplane is neither open nor closed.

Figure 1.14 illustrates what happens when we add a point outside of the boundary.
It turns out that with the modifications to our existing algorithms, Algorithm 20 works
with no changes.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

1.6. ALGORITHMS FOR COMPUTING THE DELAUNAY TRIANGULATION 41

1
2

3

4

5

6

7

8

9

10

11

12

(a) A point to be added.

1
2

3

4

5

6

7

8

9

10

11

12

(b) Triangles that are no longer
Delaunay. The unbounded tri-
angle is the ghost triangle.

1
2

3

4

5

6

7

8

9

10

11

12

(c) Updated triangulation with
p12 now included.

Figure 1.14: Process for inserting a vertex out a triangulation with the Bowyer-Watson
algorithm. In (a), the point p12 marked in blue is to be added. In (b), we locate all
triangles whose open circumdisk contains p12 and mark them in blue. These triangles are
no longer Delaunay. The ghost triangle T9,10,∂, represented by the unbounded triangle,
has p12 in its open circumdisk as it is left of e9,10. (c) This is the updated triangulation,
with new edges shown in blue. In each figure, the dashed lines are to be interpreted as
the ghost edges.

Daniel VandenHeuvel CHAPTER 1. DELAUNAY TRIANGULATION

Bibliography

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach
to numerical computing. SIAM Review, 59 (1), 65–98.

Bowyer, A. (1981). Computing Dirichlet tessellations. Computer Journal, 24, 162–166.
Cheng, S.-W., Dey, T. K., & Shewchuk, J. R. (2013). Delaunay mesh generation. CRC

Press.
Chew, L. P. (1990). Building Voronoi diagrams for convex polygons in linear expected time

(Technical Report PCS-TR90-147). Department of Mathematics and Computer
Science, Dartmouth College. Hanover, New Hampshire.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algo-
rithms (4th ed.). MIT Press.

de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2008). Computational ge-
ometry: Algorithms and applications (3rd ed.). Springer.

de Berg, M., van Kreveld, M., Overmars, M., & Schwarzkopf, O. (1999). Computational
geometry: Algorithms and applications (2nd ed.). Springer.

Deo, N. (2018). Graphs. In D. P. Mehta & S. Sahni (Eds.), Handbook of data structures
and algorithms (2nd ed., pp. 49–66). CRC Press.

Devillers, O., Pion, S., & Teillaud, M. (2002). Walking in a triangulation. International
Journal of Foundations of Computer Science, 13, 181–199.

Devroye, L., Mücke, E., & Zhu, B. (1998). A note on point location in Delaunay trian-
gulations of random points. Algorithmica, 22, 477–482.

Kolingerová, I., & Žalik, B. (2002). Improvements to randomized incremental Delaunay
insertion. Computers & Graphics, 26, A477–490.

Lairez, P. (2019). ExactPredicates.jl [v2.2.2. Accessed on 2022 October 9.].
Lin, D. (2013). DataStructures.jl [v0.18.13. Accessed on 2022 October 6.].
Mehta, D. P. (2018). Trees. In D. P. Mehta & S. Sahni (Eds.), Handbook of data structures

and algorithms (2nd ed., pp. 35–48). CRC Press.
Mücke, E. P., Saias, I., & Zhu, B. (1999). Fast randomized point location without pre-

processing in two- and three-dimensional Delaunay triangulations. Computational
Geometry, 12, 63–83.

Protter, M. (2021). MutableNamedTuples.jl [v0.1.2. Accessed on 2022 October 21.].
Scheinerman, E. (2014). SimpleGraphs.jl [v0.8.3. Accessed on 2022 October 6.].
Shewchuk, J. R. (1996). Triangle: Engineering a 2D Quality Mesh Generator and De-

launay Triangulator [From the First ACM Workshop on Applied Computational
Geometry]. In M. C. Lin & D. Manocha (Eds.), Applied computational geometry:
Towards geometric engineering (pp. 203–222, Vol. 1148). Springer-Verlag.

42

BIBLIOGRAPHY 43

Watson, D. F. (1981). Computing the n-dimensional Delaunay tessellation with applica-
tion to Voronoi polytyopes. Computer Journal, 24, 167–172.

Daniel VandenHeuvel BIBLIOGRAPHY

	Delaunay Triangulation
	Directed Acyclic Graphs
	Triangulations
	The Delaunay Triangulation
	Data Structures for Delaunay Triangulations
	The adjacent map
	The adjacent-to-vertex map
	Graph representation of a triangulation

	Operations on Delaunay Triangulations
	Useful subroutines
	Adding a triangle
	Deleting a triangle
	Splitting a triangle in the interior
	Flipping an edge
	Legalising an edge
	Splitting an edge
	Point location by walking
	Triangulating convex polygons

	Algorithms for Computing the Delaunay Triangulation
	de Berg's randomised incremental insertion algorithm
	Super triangle
	Point location
	The algorithm

	Bowyer-Watson algorithm
	Point insertion
	Ghost triangles
	Adding a point outside of the triangulation

