
APPENDIX A

THE DELTA-SIGMA TOOLBOX

Getting Started

Go to http://www.mathworks.com/matlabcentral/fileexchange/ and
search for delsig. Download and install the delsig.zip file. Add the delsig directory
to the MATLAB path. To improve simulation speed, compile the simulateDSM.c file by
typing mex simulateDSM.c at the MATLAB prompt. Do the same for simulateMS.c.

The Delta-Sigma Toolbox requires the Signal Processing Toolbox and the Control
Systems Toolbox; the clans and designPBF functions also require the Optimization
Toolbox.

The following conventions are used throughout the Delta-Sigma Toolbox:

Frequencies are normalized; f = 1 corresponds to the sampling frequency, fs.

Default values for function arguments are shown following an equals sign in the pa-
rameter list. To use the default value for an argument, omit the argument if it is at
the end of the list, otherwise use NaN (not-a-number) or [] (the empty matrix) as a
place-holder.

The loop filter of a general delta-sigma modulator is described with an ABCD matrix.
See ”Modulator Model Details” on page 35 for a description of this matrix.
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2 THE DELTA-SIGMA TOOLBOX

Demonstrations and Examples

dsdemo1 Demonstration of the synthesizeNTF function. Noise transfer function syn-
thesis for a 5th-order lowpass modulator, both with and without optimized
zeros, plus an 8th-order bandpass modulator with optimized zeros.

dsdemo2 Demonstration of the simulateDSM, predictSNR and simulateSNR func-
tions: time-domain simulation, SNR prediction using the describing function
method of Ardalan and Paulos, spectral analysis and signal-to-noise ratio cal-
culation. Lowpass, bandpass, multi-bit lowpass examples are given.

dsdemo3 Demonstration of the realizeNTF, stuffABCD, scaleABCD and mapABCD

functions: coefficient calculation and dynamic range scaling.
dsdemo4 Audio demonstration of MOD1 and MOD2 with sincn decimation.
dsdemo5 Demonstration of the simulateMS function: simulation of the element se-

lection logic of a mismatch-shaping DAC.
dsdemo6 Demonstration of the designHBF function. Hardware-efficient halfband fil-

ter design and simulation.
dsdemo7 Demonstration of the findPIS function: positively-invariant set computa-

tion.
dsexample1 Discrete-time modulator design example.
dsexample2 Continuous-time lowpass modulator design example.

NTF (and STF)
available.

Specify OSR,
lowpass/bandpass,
no. of Q. levels.

synthesizeNTF,

designLCBP

simulateDSM,

ABCD: state-
space description
of the modulator.

scaleABCD

Parameters for a
specific topology.

stuffABCD

mapABCD

Time-domain sim-
ulation and SNR
determination.

simulateSNR,

calculateTF

predictSNR
findPIS or
find2dPIS

Convex positively
invariant set.

clans

Parameters for an
LCBP modulator.

simulateESL
designHBF, simulateHBF
mapCtoD, designLCBP

Also:

Figure A.1 Flowchart of key ∆Σ Toolbox functions.
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Key Functions

ntf = synthesizeNTF(order=3,R=64,opt=0,H inf=1.5,f0=0) page 7
ntf = clans(order=4,R=64,Q=5,rmax=0.95,opt=0) page 8
ntf = synthesizeChebyshevNTF(order=3,R=64,opt=0,H inf=1.5,f0=0) page 9
Synthesize a noise transfer function.

[v,xn,xmax,y] = simulateDSM(u,ABCD,nlev=2,x0=0) page 10
[v,xn,xmax,y] = simulateDSM(u,ntf,nlev=2,x0=0)
Simulate a delta-sigma modulator with a given input.

[snr,amp] = simulateSNR(ntf,OSR,amp=...,
f0=0,nlev=2,f=1/(4*R),k=13) page 11

Determine the SNR vs. input amplitude curve by simulation.

[a,g,b,c] = realizeNTF(ntf,form=’CRFB’,stf=1) page 12
Convert a noise transfer function into coefficients for the specified topology.

ABCD = stuffABCD(a,g,b,c,form=’CRFB’) page 13
Calculate the ABCD matrix given the parameters of the specified topology.

[a,g,b,c] = mapABCD(ABCD,form=’CRFB’) page 13
Convert the ABCD matrix into the parameters of the specified topology.

[ABCDs, umax] = scaleABCD(ABCD,nlev=2,f=0,xlim=1,ymax=nlev+2) page 14
Perform dynamic range scaling on a delta-sigma modulator described by ABCD.

[ntf,stf] = calculateTF(ABCD,k=1) page 15
Calculate the NTF and STF of a delta-sigma modulator described by the given
ABCD matrix, assuming a quantizer gain of k.

[sv,sx,sigma se,max sx,max sy] =
simulateMSv,mtf,M=16,d=0,dw=[1-],sx0=[0-]) page 16

Simulate the element-selection logic of a mismatch-shaping DAC.
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Functions for Continuous-Time Systems

[ABCDc,tdac2]= realizeNTF ct(ntf,form=’FB’,tdac,ordering=[1:n],
bp=zeros(-),ABCDc) page 18

Realize an NTF with a continuous-time loop filter.

[sys, Gp] = mapCtoD(sys c,t=[0 1],f0=0) page 19
Map a continuous-time system to a discrete-time system whose impulse response
matches the sampled pulse response of the original continuous-time system. See
dsexample2.

H = evalTFP(Hs,Hz,f) page 20
Compute the value of the product of the continuous-time transfer function Hs
and the discrete-time transfer function Hz at frequencies f . Use this function to
evaluate the signal transfer function of a CT ∆Σ ADC system.

Functions for Quadrature Systems

ntf = synthesizeQNTF(order=3,OSR=64,f0=0,NG=-60,ING=-20) page 21
Synthesize a noise transfer function for a quadrature delta-sigma modulator.

[v,xn,xmax,y] = simulateQDSM(u,ABCD|ntf,nlev=2,x0=0) page 22
Simulate a quadrature delta-sigma modulator with the given input.

ABCD = realizeQNTF(ntf,form=’FB’,rot=0,bn) page 23
Convert a quadrature noise transfer function into a complex ABCD matrix for the
specified structure.

ABCDr = mapQtoR(ABCD) and [ABCDq ABCDp] = mapR2Q(ABCDr) page 24
Convert a complex matrix into its real equivalent and vice versa.

[ntf stf intf istf] = calculateQTF(ABCDr) page 25
Calculate the noise and signal transfer functions of a quadrature modulator.

[sv,sx,sigma se,max sx,max sy]=
simulateQESL(v,mtf,M=16,sx0=[0-]) page 26

Simulate the Element Selection Logic of a quadrature differential DAC.

Note: simulateSNR works for a quadrature modulator if given a complex NTF or ABCD
matrix; simulateDSM can also be used for a quadrature modulator if given an ABCDr

matrix and a 2-element nlev vector.



THE DELTA-SIGMA TOOLBOX 5

Specialty Functions

[f1,f2,info] = designHBF(fp=0.2,delta=1e-5,debug=0) page 27
Design a Saramäki half-band filter for use in a decimation or interpolation filter.

y = simulateHBF(x,f1,f2,mode=0) page 29
Simulate a Saramäki half-band filter in the time domain.

[C, e, x0] = designPBF(N,M,pb,pbr,sbr,ncd,np,ns,fmax) page 30
Design a symmetric polynomial-based filter (PBF) according to Hunter’s method.

[snr,amp,k0,k1,sigma e2 = predictSNR(ntf,OSR=64,amp=...,f0=0) page 31
Predict the SNR vs. input amplitude curve using the describing function method.

[s,e,n,o,Sc] = findPIS(u,ABCD,nlev=2,options) page 32
Find a convex positively-invariant set for a delta-sigma modulator.

[data, snr] = findPattern(N=1024,OSR=64,ntf,ftest,Atest,
f0=0,nlev=2,quadrature=0,dbg=0) page 34

Create a length-N data record which has good spectral properties when repeated.

Utility Funtions

Delta-Sigma Utility

mod1, mod2

Set the ABCD matrix, NTF and STF of the standard 1st- and 2nd-order modulators.

snr = calculateSNR(hwfft,f,nsig=1)

Estimate the SNR given the in-band bins of a windowed FFT and the location of the input.

[A B C D] = partitionABCD(ABCD, m)

Partition ABCD into A, B, C, D for an m-input state-space system.

H inf = infnorm(H)

Compute the infinity norm (maximum absolute value) of a z-domain transfer function.

y = impL1(ntf,n=10)

Compute n points of the impulse response from the comparator output back to the com-
parator input for the given NTF.

y = pulse(S,tp=[0 1],dt=1,tfinal=10,nosum=0)

Compute the sampled pulse response of a continuous-time system.

sigma H = rmsGain(H,f1,f2)

Compute the root mean-square gain of the discrete-time transfer function H in the fre-
quency band [ f1, f2].
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General Utility

dbv(), dbp(), undbv(), undbp(), dbm(), undbm()

The dB equivalent of voltage/power quantities, and their inverse functions.

window = ds hann(N)

A Hann window of length N. Unlike MATLAB’s original hanning function, ds hann

does not smear tones which are located exactly in an FFT bin (i.e. tones having an integral
number of cycles in the given block of data). MATLAB 6’s hanning(N,’periodic’)
function and MATLAB 7’s hann(N,’periodic’) function are the same as ds hann(N).

mag = zinc(f,n=64,m=1)

Calculate the magnitude response of a cascade of m sincn filters at frequencies f .

Graphing Utility

plotPZ(H,color=’b’,markersize=5,list=0)

Plot the poles and zeros of a transfer function.

plotSpectrum(X,fin,fmt)

Plot a smoothed spectrum.

figureMagic(xRange,dx,xLab, yRange,dy,yLab, size)

Performs a number of formatting operations for the current figure, including axis limits,
ticks and labelling.

printmif(file,size,font,fig)

Print a figure to an Adobe Illustrator file and then use ai2mif to convert it to FrameMaker
MIF format. ai2mif is an improved version of the function of the same name originally
written by Deron Jackson <djackson@mit.edu>.

[f,p] = logsmooth(X,inBin,nbin)

Smooth the FFT X, and convert it to dB. See also bplogsmooth and bilogplot.
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synthesizeNTF

Synopsis: ntf = synthesizeNTF(order=3,OSR=64,opt=0,H inf=1.5,f0=0)

Synthesize a noise transfer function (NTF) for a delta-sigma modulator.

Input
order The order of the NTF. order must be even for bandpass modulators.
OSR The oversampling ratio. OSR is only needed when optimized NTF zeros

are requested.
opt A flag used to request optimized NTF zeros.

opt=0 puts all NTF zeros at band-center.
opt=1 optimizes the NTF zeros according to the high-OSR limit.
opt=2 puts at least one zero at band-center, but optimizes the rest.
opt=3 uses the Optimization Toolbox to optimize the zeros.

H inf The maximum out-of-band gain of the NTF. Lee’s rule states that
H inf<2 should yield a stable modulator with a binary quantizer. Reduc-
ing H inf increases the likelihood of success, but reduces the attenuation
provided by the NTF and thus the theoretical resolution of the modulator.

f0 The center frequency of the modulator. f0 6= 0 yields a bandpass modu-
lator; f0=0.25 puts the center frequency at fs/4.

Output
ntf The modulator NTF, given as an LTI object in zero-pole form.

Bugs
If OSR or H inf are low, the NTF is not optimal. Use synthesizeChebyshevNTF instead.

Example
Fifth-order lowpass modulator; zeros optimized for an oversampling ratio of 32.
>> H = synthesizeNTF(5,32,1)

Zero/pole/gain:

(z-1) (z2̂ - 1.997z + 1) (z2̂ - 1.992z + 1)

----------------------------------------------------------

(z-0.7778) (z2̂ - 1.613z + 0.6649) (z2̂ - 1.796z + 0.8549)

Sampling time: 1

1/640

normalized frequency (1 → fs)
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clans

Synopsis: ntf = clans(order=4,OSR=64,Q=5,rmax=0.95,opt=0)

Synthesize a lowpass NTF using the CLANS (Closed-loop analysis of noise-shaper) method-
ology [1]. This function requires the Optimization Toolbox.

[1] J. G. Kenney and L. R. Carley, “Design of multibit noise-shaping data converters,”
Analog Integrated Circuits Signal Processing Journal, vol. 3, pp. 259-272, 1993.

Input
order The order of the NTF.
OSR The oversampling ratio.
Q The maximum number of quantization levels used by the fed-back quan-

tization noise. (Mathematically, Q = ||h||1− 1, i.e. the sum of the ab-
solute values of the impulse response samples minus 1.) The maximum
stable input of a ∆Σ modulator is guaranteed to be at least (nlev−Q).

rmax The maximum radius for the NTF poles.
opt A flag used to request optimized NTF zeros.

Output
ntf The modulator NTF, given as an LTI object in zero-pole form.

Example
5th-order lowpass modulator; time-domain noise gain of 5, zeros optimized for OSR = 32.
>> H= clans(5,32,5,.95,1)
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synthesizeChebyshevNTF

Synopsis: ntf = synthesizeChebyshevNTF(order,OSR,opt,H inf,f0)

Obtain a noise transfer function (NTF) in which has equiripple magnitude in the passband.
synthesizeChebyshevNTF creates NTFs which are no better than synthesizeNTF,
except when OSR or H inf are low.

Input and Output
Same as ssynthesizeNTF, except that the opt argument is not supported yet.

Examples
Compare the NTFs created by synthesizeNTF and synthesizeChebyshevNTF when
OSR is low:
>> OSR = 4; order = 8; H inf = 3;

>> H1 = synthesizeNTF(order,OSR,1,H inf);

>> H3 = synthesizeChebyshevNTF(order,OSR,1,H inf);
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Repeat for H inf low:
>> OSR = 32; order = 5; H inf = 1.2;

>> H1 = synthesizeNTF(order,OSR,1,H inf);

>> H3 = synthesizeChebyshevNTF(order,OSR,1,H inf);
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simulateDSM

Synopsis: [v,xn,xmax,y] = simulateDSM(u,ABCD|ntf,nlev=2,x0=0)

Simulate a delta-sigma modulator with a given input. For maximum speed, make sure
that the compiled mex file is on your search path by typing which simulateDSM at the
MATLABTM prompt.

Input
u The input sequence to the modulator, given as a m×N matrix, where m

is the number of inputs (usually 1). Note that full-scale corresponds to
an input of magnitude nlev−1.

ABCD A state-space description of the modulator loop filter.
ntf The modulator NTF, given in zero-pole form. The modulator STF is

assumed to be unity.
nlev The number of levels in the quantizer. Multiple quantizers are indicated

by making nlev a column vector.
x0 The initial state of the modulator.

Output
v The samples of the output of the modulator, one for each input sample.
xn The internal states of the modulator, one for each input sample, given as

an n×N matrix.
xmax The maximum absolute values of each state variable.
y The samples of the quantizer input, one per input sample.

Example
Simulate a 5th-order binary lowpass modulator with a half-scale sine-wave input and plot
its output in the time and frequency domains.

>> OSR = 32; H = synthesizeNTF(5,OSR,1)}
>> N = 8192; fB = ceil(N/(2*OSR));}
>> f=85; u = 0.5*sin(2*pi*f/N*[0:N-1]);}
>> v = simulateDSM(u,H);

t = 0:85;
stairs(t, u(t+1),'g');
hold on;
stairs(t,v(t+1),'b');
axis([0 85 -1.2 1.2]);
ylabel('u, v');

spec=fft(v.*ds_hann(N))/(N/4);
plot(linspace(0,0.5,N/2+1), ...

dbv (spec(1:N/2+1)));
axis([0 0.5 -120 0]);
grid on;
ylabel('dBFS/NBW')
snr= calculateSNR (spec(1:fB),f);
s=sprintf('SNR = %4.1fdB\n',snr);
text(0.25,-90,s);
s=sprintf('NBW=%7.5f',1.5/N);
text(0.25, -110, s);

sample number

normalized frequency (1 → fs)
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simulateSNR

Synopsis: [snr,amp] = simulateSNR(ntf|ABCD|function,osr,amp,f0=0,

nlev=2,f=1/(4*OSR),k=13,quadrature=0)

Simulate a delta-sigma modulator with sine wave inputs of various amplitudes and calcu-
late the signal-to-noise ratio (SNR) in dB for each input.

Input
ntf The modulator NTF, given in zero-pole form.
ABCD A state-space description of the modulator loop filter, or the name of a

function taking the input signal as its sole argument.
osr The oversampling ratio.
amp A row vector listing the amplitudes to use. Defaults to [-120 -110...-20

-15 -10 -9 -8 ... 0] dB, where 0 dB means a full-scale (peak value =
n lev−1) sine wave.

f0 The center frequency of the modulator.
nlev The number of levels in the quantizer. Multiple quantizers are indicated

by making nlev a vector.
f The test frequency, adjusted to be an FFT bin.
k The number of time points used for the FFT is 2k.
quadrature A flag indicating that the system being simulated is quadrature. This flag

is set automatically if either ntf or ABCD are complex.

Output
snr A row vector containing the SNR values calculated from the simulations.
amp A row vector listing the amplitudes used.

Example
Compare the SNR vs. input amplitude curve determined by the describing function method
of Ardalan and Paulos with that determined by simulation for a 5th-order modulator.
>> OSR = 32; H = synthesizeNTF(5,OSR,1)

>> [snr pred,amp] = predictSNR(H,OSR);

>> [snr,amp] = simulateSNR(H,OSR);

plot(amp,snr_pred,'b',amp,snr,'gs');
grid on;
figureMagic ([-100 0], 10, 2, ...

[0 100], 10, 1);
xlabel('Input Level, dB');
ylabel('SNR dB');
s=sprintf('peak SNR = %4.1fdB\n',...

max(snr));
text(-65,15,s);
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realizeNTF

Synopsis: [a,g,b,c] = realizeNTF(ntf,form=’CRFB’,stf=1)

Convert an NTF into a set of coefficients for a particular modulator topology.

Input
ntf The modulator NTF, given in zero-pole form (i.e. a zpk object).
form A string specifying the modulator topology.

CRFB Cascade-of-resonators, feedback form.
CRFF Cascade-of-resonators, feedforward form.
CIFB Cascade-of-integrators, feedback form.
CIFF Cascade-of-integrators, feedforward form.
----D Any of the above, but the quantizer is delaying.
Structures are described in ”Modulator Model Details” on page 35.

stf The modulator STF, specified as a zpk object. Note that the poles of the
STF must match those of the NTF in order to guarantee that the STF can
be realized without the addition of extra state variables.

Output
a Feedback/feedforward coefficients from/to the quantizer (1×n).
g Resonator coefficients (1×bn/2c).
b Feed-in coefficients from the modulator input to each integrator

(1× (n+1)).
c Integrator inter-stage coefficients. (1× n). In unscaled modulators, c is

all ones.

Example
Determine the coefficients for a 5th-order modulator with the cascade-of-resonators struc-
ture, feedback (CRFB) form.

>> H = synthesizeNTF(5,32,1);}
>> [a,g,b,c] = realizeNTF(H,’CRFB’)}
a = 0.0007 0.0084 0.0550 0.2443 0.5579}
g = 0.0028 0.0079}
b = 0.0007 0.0084 0.0550 0.2443 0.5579 1.0000}
c = 1 1 1 1 1

See Also
Use realizeNTF ct (page 18) to realize an NTF with a continuous-time loop filter.
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stuffABCD

Synopsis: ABCD = stuffABCD(a,g,b,c,form=’CRFB’)

Calculate the ABCD matrix given the parameters of a specified modulator topology.

Input
a Feedback/feedforward coefficients from/to the quantizer.
g Resonator coefficients.
b Feed-in coefficients from the modulator input to each integrator.
c Integrator inter-stage coefficients.
form See realizeNTF on page 12 for a list of supported forms and ”Sup-

ported Modulator Topologies” on page 36 for block diagrams of them.

Output

ABCD A state-space description of the loop filter.

mapABCD

Synopsis: [a,g,b,c] = mapABCD(ABCD,form=’CRFB’)

Calculate the parameters for a specified modulator topology, assuming ABCD fits that
topology.

Input
ABCD A state-space description of the modulator loop filter.
form See realizeNTF on page 12 for a list of supported structures.
Output
a Feedback/feedforward coefficients from/to the quantizer.
g Resonator coefficients.
b Feed-in coefficients from the modulator input to each integrator.
c Integrator inter-stage coefficients.
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scaleABCD

Synopsis: [ABCDs,umax]=scaleABCD(ABCD,nlev=2,f=0,xlim=1,ymax=nlev+5,

umax,N=1e5)

Scale the ABCD matrix so that the state maxima are less than a specified limit. The maxi-
mum stable input is determined as a side-effect of this process.

Input
ABCD A state-space description of the modulator loop filter.
nlev The number of levels in the quantizer.
f The normalized frequency of the test sinusoid.
xlim The limit on the states. May be given as a vector.
ymax The threshold for judging modulator stability. If the quantizer input ex-

ceeds ymax, the modulator is considered to be unstable.

Output
ABCDs The scaled state-space description of the modulator loop filter.
umax The maximum stable input. Input sinusoids with amplitudes below this

value should not cause the modulator states to exceed their specified lim-
its.
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calculateTF

Synopsis: [ntf,stf] = calculateTF(ABCD,k=1)

Calculate the NTF and STF of a delta-sigma modulator.

Input
ABCD A state-space description of the modulator’s loop filter.
k The quantizer gain to assume.

Output
ntf The modulator NTF, given as an LTI system in zero-pole form.
stf The modulator STF, given as an LTI system in zero-pole form.

Example
Realize a 5th-order modulator with the cascade-of-resonators structure, feedback form.
Calculate the ABCD matrix of the loop filter and verify that the NTF and STF are correct.

>> H = synthesizeNTF(5,32,1)
Zero/pole/gain:
(z-1) (zˆ2 - 1.997z + 1) (zˆ2 - 1.992z + 1)
----------------------------------------------------------
(z-0.7778) (zˆ2 - 1.613z + 0.6649) (zˆ2 - 1.796z + 0.8549)
Sampling time: 1

>> [a,g,b,c] = realizeNTF(H)
a = 0.0007 0.0084 0.0550 0.2443 0.5579
g = 0.0028 0.0079
b = 0.0007 0.0084 0.0550 0.2443 0.5579 1.0000
c = 1 1 1 1 1

>> ABCD = stuffABCD(a,g,b,c)
ABCD =
1.0000 0 0 0 0 0.0007 -0.0007
1.0000 1.0000 -0.0028 0 0 0.0084 -0.0084
1.0000 1.0000 0.9972 0 0 0.0633 -0.0633

0 0 1.0000 1.0000 -0.0079 0.2443 -0.2443
0 0 1.0000 1.0000 0.9921 0.8023 -0.8023
0 0 0 0 1.0000 1.0000 0

>> [ntf,stf] = calculateTF(ABCD)
Zero/pole/gain:
(z-1) (zˆ2 - 1.997z + 1) (zˆ2 - 1.992z + 1)
----------------------------------------------------------
(z-0.7778) (zˆ2 - 1.613z + 0.6649) (zˆ2 - 1.796z + 0.8549)
Sampling time: 1

Zero/pole/gain:
1
Static gain.
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simulateMS

Synopsis: [sv,sx,sigma se,max sx,max sy]

= simulateMS(v,mtf,M=16,d=0,dw=[1-],sx0=[0-])

Simulate an M-element DAC using mismatch-shaping transfer function mtf .

Reference
R. Schreier and B. Zhang “Noise-shaped multibit D/A convertor employing unit elements,”
Electronics Letters, vol. 31, no. 20, pp. 1712-1713, Sept. 28 1995.

Input
v A vector containing the number of elements to enable. Note that the

output of simulateDSM must be offset and scaled in order to be used
here as v must be in the range [0,∑M

i dw(i)].
mtf The mismatch-shaping transfer function, given in zero-pole form.
M The number of DAC elements.
d Dither uniformly distributed in [−d,d] is added to the sy input of the

vector quantizer.
dw A vector containing the nominal weight associated with each element.
sx0 An n×M matrix containing the initial state of the element selection logic.

Output
sv The selection vector: a vector of zeros and ones indicating which ele-

ments to enable.
sx An n×M matrix containing the final state of the element selection logic.
sigma se The rms value of the selection error, se = sv−sy. sigma se may be used

to analytically estimate the power of in-band noise caused by element
mismatch.

max sx The maximum value attained by any state in the ESL.
max sy The maximum value attained by any component of the (un-normalized)

“desired usage” vector sy.

MTF -1

quantizer
su vector

-min()

sv

sy

se

Block diagram of the Element Selection Logic

M

v
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Example (cf. dsdemo5)
Compare the usage patterns and example spectra for a 16-element DAC driven with thermometer-
coded, 1st-order and 2nd-order mismatch-shaped data generated by a 3rd-order modulator.

ntf = synthesizeNTF(3,[],[],4);
M = 16;
N = 2ˆ14;
fin = round(0.33*N/(2*12));
u = M/sqrt(2)*sin((2*pi/N)*fin*[0:N-1]);
v = simulateDSM(u,ntf,M+1);
sv0 = ds_therm(v,M);
mtf1 = zpk(1,0,1,1); % First-order shaping
sv1 = simulateMS(v,mtf1,M);
mtf2 = zpk([ 1 1 ], [ 0 0 ], 1, 1); % Second-order shaping
sv2 = simulateMS(v,mtf2,M);
ue = 1 + 0.01*randn(M,1); % 1% mismatch
dv0 = ue’ * sv0;
spec0 = fft(dv0.*ds_hann(N))/(M*N/8);
plotSpectrum(spec0,fin,’g’);
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realizeNTF ct

Synopsis: [ABCDc,tdac2] = realizeNTF ct(ntf,form=’FB’ ,tdac=[0 1],

ordering=[1:n],bp=zeros(-),ABCDc)

Realize a noise transfer function (NTF) with a continuous-time loop filter.

Input
ntf The modulator NTF, specified as an LTI object in zero-pole form.
form A string specifying the modulator topology.

FB Feedback form.
FF Feedforward form.

tdac The timing for the feedback DAC(s). If tdac(1)≥ 1, direct feedback
terms are added to the quantizer. Multiple timings (one or more per inte-
grator) for the FB topology can be specified by making tdac a cell array,
e.g.
tdac = {[1,2]; [1 2]; [0.5 1],[1 1.5]; [];}

ordering A vector specifying which NTF zero-pair to use in each resonator. De-
fault is for the zero-pairs to be used in the order specified in the NTF.

bp A vector specifying which resonator sections are bandpass. The default
(zeros(...)) is for all sections to be lowpass.

ABCDc The loop filter structure, in state-space form. If this argument is omitted,
ABCDc is constructed according to form.

Output
ABCDc A state-space description of the CT loop filter.
tdac2 A matrix with the DAC timings, one for each input, including ones that

were automatically added.

Example
Realize the NTF with a CT system (cf. the example on page 19).

>> ntf = zpk([1 1],[0 0],1,1);
>> [ABCDc,tdac2] = realizeNTF_ct(ntf,’FB’)

ABCDc =
0 0 1.0000 -1.0000

1.0000 0 0 -1.5000
0 1.0000 0 0.0000

tdac2 =
-1 -1
0 1
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mapCtoD

Synopsis: [sys, Gp] = mapCtoD(sys c,t=[0 1],f0=0)

Map a MIMO continuous-time system to a SIMO discrete-time equivalent. The criterion
for equivalence is that the sampled pulse response of the CT system must be identical to
the impulse response of the DT system. I.e. if yc is the output of the CT system with an
input vc taken from a set of DACs fed with a single DT input v, then y, the output of the
equivalent DT system with input v satisfies y[n] = yc(n−) for integer n. The DACs are
characterized by rectangular impulse responses with edge times specified in the t matrix.

Input
sys c The LTI description of the CT system.
t The edge times of the DAC pulse used to make CT waveforms from DT

inputs. Each row corresponds to one of the system inputs; [-1 -1]

denotes a CT input. The default is [0 1] for all inputs except the first,
which is assumed to be a CT input.

f0 The frequency for which the Gp filters’ gains are to be set to unity. De-
fault 0 (DC).

Output
sys The LTI description for the DT equivalent.
Gp The mixed CT/DT prefilters which form the samples fed to each state for

the CT inputs.

Reference
R. Schreier and B. Zhang, “Delta-sigma modulators employing continuous-time circuitry,”
IEEE Transactions on Circuits and Systems I, vol. 43, no. 4, pp. 324-332, April 1996.

Example
Map the standard second-order CT modulator shown below to its DT equivalent and verify
that the NTF is (1− z−1)2.

–1.5–1

Quc v∫ ∫ (clocked)

x1c
˙

x2c
˙

yc

0 0 1 1–

1 0 0 1.5–

0 1 0 0

x1c
˙

x2c
˙

uc

vc

=

DAC
vc

>> LFc = ss([0 0;1 0], [1 -1;0 -1.5], [0 1], [0 0]);
>> tdac = [0 1];
>> [LF,Gp] = mapCtoD(LFc,tdac);
>> ABCD = [LF.a LF.b; LF.c LF.d];
>> H = calculateTF(ABCD)

Zero/pole/gain:
(z-1)ˆ2
-------
zˆ2

Sampling time: 1
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evalTFP

Synopsis: H = evalTFP(Hs,Hz,f)

Use this function to evaluate the signal transfer function of a continuous-time (CT) system.
In this context Hs is the open-loop response of the loop filter from the u input and Hz is the
closed-loop noise transfer function.

Input
Hs A continuous-time transfer function in zpk form.
Hz A discrete-time transfer function in zpk form.
f A vector of frequencies.

Output
H The value of Hs( j2π f )Hz(e j2π f )).

See Also
evalMixedTF is a more advanced version of this function which is used to evaluate the
individual feed-in transfer functions of a CT modulator.

Example
Plot the STF of the 2nd-order CT system depicted on page 19.

Ac = [0 0; 1 0];
Bc = [1 -1; 0 -1.5];
Cc = [0 1];
Dc = [0 0];
LFc = ss(Ac, Bc, Cc, Dc);
L0c = zpk(ss(Ac,Bc(:,1),Cc,Dc(1)));
tdac = [0 1];
[LF,Gp] = mapCtoD(LFc,tdac);
ABCD = [LF.a LF.b; LF.c LF.d];
H = calculateTF(ABCD);
% Yields H=(1-zˆ-1)ˆ2
f = linspace(0,2,300);
STF = evalTFP(L0c,H,f);
plot(f,dbv(STF));
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synthesizeQNTF

Synopsis: ntf = synthesizeQNTF(order=3,OSR=64,f0=0,f0=-60,ING=-20,

n im=order/3)

Synthesize a noise transfer function (NTF) for a quadrature delta-sigma modulator.

Input
order The order of the NTF.
OSR The oversampling ratio.
f0 The center frequency of the modulator.
NG The rms in-band noise gain (dB).
ING The rms image-band noise gain (dB).
n im Number of image-band zeros.

Output
ntf The modulator NTF, given as an LTI object in zero-pole form.

Bugs
ALPHA VERSION. This function uses an experimental ad hoc method that is neither op-
timal nor robust.

Example
Fourth-order, , bandpass NTF with an rms in-band noise gain of −50 dB and an image-
band noise gain of −10 dB.

>> ntf = synthesizeQNTF(4,32,1/16,-50,-10);

Zero/pole/gain:

(z-(0.953+0.303i)) (zˆ2 - 1.85z + 1) (z-(0.888+0.460i))
---------------------------------------------------------------------------
(z-(0.809+0.003i)) (z-(0.591+0.245i)) (z-(0.673-0.279i)) (z-(0.574+0.570i))

Sampling time: 1
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simulateQDSM

Synopsis: [v,xn,xmax,y] = simulateQDSM(u,ABCD|ntf,nlev=2,x0=0)

Simulate a quadrature delta-sigma modulator with a given input. For improved simula-
tion speed, use simulateDSM with a 2-input/2-output ABCDr argument as indicated in the
example in mapQtoR on page 24.

Input
u The input sequence to the modulator, given as a 1×N row vector. Full-

scale corresponds to an input of magnitude nlev−1.
ABCD A state-space description of the modulator’s loop filter.
ntf The modulator NTF, given in zero-pole form.
nlev The number of levels in the quantizer. Multiple quantizers are indicated

by making nlev a column vector.
x0 The initial state of the modulator.

Output
v The samples of the output of the modulator, one for each input sample.
xn The internal states of the modulator, one for each input sample, given as

an n×N matrix.
xmax The maximum absolute values of each state variable.
y The samples of the quantizer input, one per input sample.

Example
Simulate a 4th-order 9-level quadrature modulator with a half-scale sine-wave input and
plot its output in the time and frequency domains.

nlev = 9; f0 = 1/16; osr = 32; M = nlev-1;
ntf = synthesizeQNTF(4,osr,f0,-50,-10);
N = 64*osr; f = round((f0+0.3*0.5/osr)*N)/N;
u = 0.5*M*exp(2i*pi*f*[0:N-1]);
v = simulateQDSM(u,ntf,nlev);
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t = 0:25;
subplot(211)
plot(t, real(u(t+1)),'g');
hold on;
stairs(t,real(v(t+1)),'b');
figureMagic(…)
ylabel('real');

spec = fft(v.*ds_hann(N))/(M*N/2);
spec = [fftshift(spec) spec(N/2+1)];
plot(linspace(-0.5,0.5,N+1), dbv(spec))
figureMagic([-0.5 0.5],1/16,2, [-120 0],10,2)
ylabel('dBFS/NBW')
[f1 f2] = ds_f1f2(osr,f0,1);
fb1 = round(f1*N); fb2 = round(f2*N);
fb = round(f*N)-fb1;
snr = calculateSNR(spec(N/2+1+[fb1:fb2]),fb);
text(f,-10,sprintf(' SNR = %4.1fdB\n',snr));
text(0.25, -105, sprintf('NBW=%0.1e',1.5/N));

–0.5 –0.375 –0.25 –0.125 0 0.125 0.25 0.375 0.5
–120

–100

–80

–60

–40

–20

0

dB
F

S
/N

B
W

SNR = 78.3dB

NBW= 7.3×10–4



THE DELTA-SIGMA TOOLBOX 23

realizeQNTF

Synopsis: ABCD = realizeQNTF(ntf,form=’FB’,rot=0,bn)

Convert a quadrature NTF into an ABCD matrix for the specified structure.

Input
ntf A zpk object specifying the modulator’s NTF.
form A string specifying the modulator topology.

FB Feedback
PFB Parallel feedback
FF Feedforward
PFF Parallel feedforward

rot rot=1 means rotate states to make as many coefficients as possible real.
bn The coefficient of the auxiliary DAC for form = ’FF’.

Output
ABCD State-space description of the loop filter.

Example
Determine coefficients for the parallel feedback (PFB) structure.

>> ntf = synthesizeQNTF(5,32,1/16,-50,-10);
>> ABCD = realizeQNTF(ntf,’PFB’,1)
ABCD =
Columns 1 through 4
0.8854+0.4648i 0 0 0
0.0065+1.0000i 0.9547+0.2974i 0 0

0 0.9715+0.2370i 0.9088+0.4171i 0
0 0 0.8797+0.4755i 0.9376+0.3477i
0 0 0 0
0 0 0 -0.9916-0.1294i

Columns 5 through 7
0 0.0025 0.0025+0.0000i
0 0 0.0262+0.0000i
0 0 0.1791+0.0000i
0 0 0.6341+0.0000i

0.9239-0.3827i 0 0.1743+0.0000i
-0.9312-0.3645i 0 0
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mapQtoR

Synopsis: ABCDr = mapQtoR(ABCD)

Convert a quadrature matrix into its real (IQ) equivalent.

Input
ABCD A complex matrix describing a quadrature system.

Output
ABCDr A real matrix corresponding to ABCD. Each element z in ABCD is re-

placed by a 2×2 matrix to make ABCDr. Specifically

z→
[

x −y
y x

]
where x = Re(z) and y = Im(z).

Example
Replace a call to simulateQDSM with a faster code block using simulateDSM.

% v = simulateQDSM(u,ntf,nlev);
ABCD = realizeQNTF(ntf,’FF’);
ABCDr = mapQtoR(ABCD);
ur = [real(u); imag(u)];
vr=simulateDSM(ur,ABCDr,nlev*[1;1]);
v = vr(1,:) + 1i*vr(2,:);

mapRtoQ

Synopsis: [ABCDq ABCDp] = mapR2Q(ABCDr)

Map a real ABCDr to a quadrature ABCD. ABCDr has its states paired (real, imaginary) as
indicated above in mapQtoR.

Input
ABCDr A real matrix describing a quadrature system.

Output
ABCDq The quadrature (complex) version of ABCDr.
ABCDp The mirror-image system matrix. ABCDp is zero if ABCDr has no quadra-

ture errors.
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calculateQTF

Synopsis: [ntf stf intf istf] = calculateQTF(ABCDr)

Calculate the noise and signal transfer functions for a quadrature modulator.

Input
ABCDr A real state-space description of the modulator’s loop filter. I/Q asym-

metries may be included in the description. These asymmetries result in
non-zero image transfer functions.

Output
ntf, stf The noise and signal transfer functions.
intf, istf The image noise and image signal transfer functions.

All transfer functions are returned as LTI systems in zero-pole form.

Example
Examine the effect of mismatch in the first feedback.

>> ABCDr = mapQtoR(ABCD);
>> ABCDr(2,end) = 1.01*ABCDr(2,end); % 0.1% mismatch in first feedback
>> [H G HI GI] = calculateQTF(ABCDr);
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simulateQESL

Synopsis: [sv,sx,sigma se,max sx,max sy]

= simulateQESL(v,mtf,M=16,sx0=[0-])

Simulate the element selection logic (ESL) of a quadrature differential DAC.

Input
v A vector the digital input values.
mtf The mismatch-shaping transfer function, given in zero-pole form.
M The number of elements. There is a total 2M elements.
sx0 An n×M matrix whose columns are the initial state of the ESL.

Output
sv The selection vector: a vector of zeros and ones indicating which ele-

ments to enable.
sx An n×M matrix containing the final state of the ESL.
sigma se The rms value of the selection error, se= sv= sy. sigma se may be used

to estimate the power of in-band noise caused by element mismatch.
max sx The maximum absolute value attained by any state in the ESL.
max sy The maximum absolute value attained by any input to the VQ.

Example

>> mtf1 = zpk(exp(2i*pi*f0),0,1,1);
% First-order complex shaping
>> sv1 = simulateQESL(v,mtf1,M);
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designHBF

Synopsis: [f1,f2,info]=designHBF(fp=0.2,delta=1e-5,debug=0)

Design a hardware-efficient linear-phase half-band filter for use in the decimation or inter-
polation filter associated with a delta-sigma modulator. This function is based on the pro-
cedure described by Saramäki [1]. Note that since the algorithm uses a non-deterministic
search procedure, successive calls may yield different designs.

[1] T. Saramäki, “Design of FIR filters as a tapped cascaded interconnection of identical
subfilters,” IEEE Transactions on Circuits and Systems, vol. 34, pp. 1011-1029, 1987.

Input
fp Normalized passband cutoff frequency.
delta Passband and stopband ripple in absolute value.

Output
f1,f2 Prototype filter and subfilter coefficients and their canonical-signed digit

(csd) representation.
info A vector containing the following information data (only set when

debug=1):
complexity The number of additions per output sample.
n1,n2 The length of the f1 and f2 vectors.
sbr The achieved stop-band attenuation in dB.
phi The scaling factor for the F2 filter.

Example
Design of a lowpass half-band filter with a cut-off frequency of 0.2 fs, a passband ripple of
less than 10−5 and a stopband gain less than 10−5 (−100 dB).

>> [f1,f2] = designHBF(0.2,1e-5);
>> f = linspace(0,0.5,1024);
>> plot(f, dbv(frespHBF(f,f1,f2)))

A plot of the filter response is shown below. The filter achieves 109 dB of attenuation in
the stopband and uses only 124 additions (no true multiplications) to produce each output
sample.

M
ag

ni
tu

de
 (

dB
)

Normalized Frequency (1→ fs)

0 0.1 0.2 0.3 0.4 0.5
−140

−120

−100

−80

−60

−40

−20

0



28 THE DELTA-SIGMA TOOLBOX

The structure of this filter as a decimation or interpolation filter is shown below. The
coefficients and their canonical signed-digit (csd) decompositions are

[f1.val]’ = [f2.val]’ = >> f1.csd >> f2.csd
0.9453 0.6211 ans = ans =

-0.6406 -0.1895 0 -4 -7 -1 -3 -8
0.1953 0.0957 1 -1 1 1 1 -1

-0.0508 ans = ans =
0.0269 -1 -3 -6 -2 -4 -9

-0.0142 -1 -1 -1 -1 1 -1
ans = ans =

-2 -4 -7 -3 -5 -9
1 -1 1 1 -1 1

ans =
-4 -7 -8
-1 1 1

ans =
-5 -8 -11
1 -1 -1

ans =
-6 -9 -11
-1 1 -1

In the csd expansions, the first row contains the powers of two while the second row gives
their signs. For example, f1(1) = 0.9453 = 20−2−4+2−7. Since the filter coefficients use
only 3 csd terms, each multiply-accumulate operation shown in the diagram below needs
only 3 additions. An implementation of this 110th-order FIR filter therefore needs only
3×3+5× (3×6+6−1) = 124 additions at the low ( fs/2) rate.
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simulateHBF

Synopsis: y = simulateHBF(x,f1,f2,mode=0)

Simulate a Saramäki half-band filter (see designHBF on page 27) in the time domain.

Input
x The input data.
f1,f2 Filter coefficients. f1 and f2 can be vectors of values or struct arrays

like those returned from designHBF.
mode This flag determines whether the input is filtered, interpolated, or deci-

mated according to the following:
0 Plain filtering, no interpolation or decimation.
1 The input is interpolated.
2 The output is decimated, even samples are taken.
3 The output is decimated, odd samples are taken.

Output
y The output data.

Example
Plot the impulse response of the HBF designed on the previous page.

>> N = (2*length(f1)-1)*2*(2*length(f2)-1)+1;
>> y = simulateHBF([1 zeros(1,N-1)],f1,f2);
>> stem([0:N-1],y);
>> figureMagic([0 N-1],5,2, [-0.2 0.5],0.1,1)
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designPBF

Synopsis: [C, e, x0] = designPBF(N,M,pb,pbr,sbr,ncd,np,ns,fmax)

Design a symmetric polynomial-based filter (PBF) according to Hunter’s method [1].
designPBF requires the Optimization Toolbox.

[1] M. T. Hunter, “Design of polynomial-based filters for continuously variable sample
rate conversion with applications in synthetic instrumentation and software defined radio,”
Ph.D. thesis, University of Florida, 2008.

Input
N=10 Number of polynomial pieces.
M=5 Order of the polynomial pieces.
pb=0.25 Passband width. Relative to the input sample rate, the passband is [0,pb]

and the stopband is [1− pb,∞). Use pb = 0.5/OSR where OSR is the
oversampling ratio of the input.

pbr=0.1 Passband ripple in dB.
sbr=-100 Stobpand ripple in dB.
ncd=0 Number of continuous derivatives. To allow the impulse response itself

to be discontinuous, use ncd = -1.
np=100 Number of points in the passband.
ns=1000 Number of points in the stopband.
fmax=5 Maximum frequency checked in the stopband.

Output
C N× (M+1) matrix containing the coefficients of the polynomial pieces.

Piece i is pi(x) =C(i,1)+C(i,2)x+C(i,3)x2 + ...+C(i,M+1)xM .
e The maximum weighted error. e≤ 1 indicates the specs were met.
x0=-0.5 Offset on the polynomial argument, i.e. x = µ +x0, where µ ∈ [0,1].

Example
Construct a 10-segment PBF using polynomials of order 5 for interpolating signals with an
input OSR of 2. Aim for a passband ripple of 0.1 dB and a stopband ripple of −100 dB.

[C, e, x0] = designPBF(10, 5, 0.5/2, 0.1, -100);
[hc, t] = impulsePBF(C,20,x0);
subplot(121); plot(t, hc, ’Linewidth’, 1);
f = linspace(0,5,1000);
Hc = frespPBF(f,C,x0);
subplot(122); plot(f, dbv(Hc), ’Linewidth’, 1);
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predictSNR

Synopsis: [snr,amp,k0,k1,sigma e2] = predictSNR(ntf,OSR=64,amp=...,f0=0)

Use the describing function method of Ardalan and Paulos [1] to predict the signal-to-noise
ratio (SNR) in dB for various input amplitudes. This method is only applicable to binary
modulators.

[1] S. H. Ardalan and J. J. Paulos, “Analysis of nonlinear behavior in delta-sigma modula-
tors,” IEEE Transactions on Circuits and Systems, vol. 34, pp. 593-603, June 1987.

Input
ntf The modulator NTF, given in zero-pole form.
OSR The oversampling ratio.
amp A row vector listing the amplitudes to use. amp defaults to

[−120−110...−20−15−10−9−8...0 ] dB, where 0 dB means a full-
scale (peak value = 1) sine wave.

f0 The center frequency of the modulator.

Output
snr A row vector containing the predicted SNRs
amp A row vector listing the amplitudes used.
k0 A row vector containing the signal gain of the quantizer model.
k1 A row vector containing the noise gain of the quantizer model.
sigma e2 A row vector containing the mean square value of the noise in the quan-

tizer model.

Example
See the example on page 11.

The Quantizer Model
The binary quantizer is modeled as a pair of linear gains and a noise source, as shown in the
figure below. The input to the quantizer is divided into signal and noise components which
are processed by signal-dependent gains k0 and k1. These components are added to a noise
source, which is assumed to be white and to have a Gaussian distribution to produce the
quantizer output. The variance σ2

e of the noise source is also signal-dependent.

variance σe
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findPIS, find2dPIS (in the PosInvSet subdirectory)

Synopsis: [s,e,n,o,Sc] = findPIS(u,ABCD,nlev=2,options)

[s,e,n,o,Sc] = findPIS(u,ABCD,nlev=2,options)

options = [dbg=0 itnLimit=2000 expFactor=0.005 N=1000 skip=100]

Find a convex positively-invariant set for a delta-sigma modulator. findPIS requires com-
pilation of the qhullmex file; find2dPIS does not but is limited to second-order systems.

This function is an implementation of the method described in [1].

[1] R. Schreier, M. Goodson and B. Zhang “An algorithm for computing convex positively
invariant sets for delta-sigma modulators,” IEEE Transactions on Circuits and Systems I,
vol. 44, no. 1, pp. 38-44, January 1997.

Input
u The input to the modulator. If u is a scalar, the input to the modulator is

constant. If u is a 2× 1 vector, the input to the modulator may be any
sequence whose samples lie in the range [u(1),u(2)].

ABCD A state-space description of the modulator loop filter.
nlev The number of quantizer levels.
dbg Set dbg=1 to see a graphical display of the iterations.
itnLimit The maximum number of iterations.
expFactor The expansion factor applied to the hull before every mapping operation.

Increasing expFactor decreases the number of iterations but results in
sets which are inflated.

N The number of points to use when constructing the initial guess.
skip The number of time steps to run the modulator before observing the state.

This handles the possibility of transients in the modulator.
qhullArgA The ‘A’ argument to the qhull program. Adjacent facets are merged if

the cosine of the angle between their normals is greater than the absolute
value of this parameter. Negative values imply that the merge operation
is performed during hull construction, rather than as a post-processing
step.

qhullArgC The ‘C’ argument to the qhull program. A facet is merged into its
neighbor if the distance between the facet’s centrum (the average of the
facet’s vertices) and the neighboring hyperplane is less than the absolute
value of this parameter. As with the above argument, negative values
imply pre-merging while positive values imply post-merging.

Output
s The vertices of the set (dim×nv).
e The edges of the set, listed as pairs of vertex indices (2×ne).
n The normals for the facets of the set (dim×n f ).
o The offsets for the facets of the set (1×n f ).
Sc The scaling matrix which was used internally to round out the set.
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Example
Find a positively-invariant set for the second-order modulator with an input of 1/

√
7.

>> ABCD = [
1 0 1 -1
1 1 1 -2
0 1 0 0];
>> s = find2dPIS(sqrt(1/7),ABCD,1)
s =
Columns 1 through 7
-1.5954 -0.2150 1.1700 2.3324 1.7129 1.0904 0.4672
-2.6019 -1.8209 0.3498 3.3359 4.0550 4.1511 3.6277
Columns 8 through 11
-0.1582 -0.7865 -1.4205 -1.5954
2.4785 0.6954 -1.7462 -2.6019
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findPattern

Synopsis: [data, snr] = findPattern(N=1024,OSR=64,ntf,ftest,Atest,

f0=0,nlev=2,quadrature=0,dbg=0)

Use delta-sigma modulation to create a length-N data-stream which has good spectral prop-
erties when repeated.

Input
N The length of the data record.
OSR The oversampling ratio.
NTF The modulator NTF.
ftest The signal frequency. ftest may be a vector.
Atest The target output level as a fraction of full-scale.
f0 The center frequency.
nlev The number of levels in the output data.
quadrature A flag which indicates to use quadrature modulation.
dbg A flag which enables showing the progress of the iterations.

Output
data 1×N data record.
snr The in-band signal-to-noise ratio, in dB.

Example
Length-1024 data record containing a−3-dBFS, 5-cycle sine wave with low in-band noise
for an oversampling ratio of 32.

N = 1024;
osr = 32;
ntf = synthesizeNTF(5,osr,1,1.5);
ftest = 5/N;
Atest = undbv(-3);
[data snr] = findPattern(N,osr,ntf,ftest,Atest);
spec = fft(data)/(N/2);
inband = 0:ceil(N/(2*osr));
lollipop(inband,dbv(spec(inband+1)),’b’,2,-120);
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  SNR = 84.2 dB
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Modulator Model

A delta-sigma modulator with a single quantizer is assumed to consist of quantizer con-
nected to a loop filter as shown in the diagram below.

G
H

H-1
H

Quantizer

U

V(z)=G(z)U(z)+H(z)E(z)Y

E

Loop Filter

L0=

L1=

The Loop Filter

The loop filter is described by an ABCD matrix. For single-quantizer systems, the loop
filter is a two-input, one-output linear system and ABCD is an (n+ 1)× (n+ 2) matrix,
partitioned into A (n×n), B (n×2), C (1×n) and D (1×2) sub-matrices as shown below:

ABCD =

[
A B
C D

]
(A.1)

The equations for updating the state and computing the output of the loop filter are

x(n+1) = Ax(n)+B
[

u(n)
v(n)

]
y(n) = Cx(n)+D

[
u(n)
v(n)

]
(A.2)

This formulation is sufficiently general to encompass all single-quantizer modulators which
employ linear loop filters. The toolbox currently supports translation to/from an ABCD de-
scription and coefficients for the following topologies:

CIFB Cascade-of-integrators, feedback form.
CIFF Cascade-of-integrators, feedforward form.
CRFB Cascade-of-resonators, feedback form.
CRFF Cascade-of-resonators, feedforward form.
CRFBD Cascade-of-resonators, feedback form, delaying quantizer.
CRFFD Cascade-of-resonators, feedforward form, delaying quantizer
Stratos A CIFF-like structure supporting NTF zeros on the unit circle (Jeff Gealow)
DSFB Double-sampled, feedback (Dan Senderowicz)

Multi-input and multi-quantizer systems can also be described with an ABCD matrix and
Eq. (A.2) will still apply. For an ni-input, no-output modulator, the dimensions of the
sub-matrices are A : n×n, B : n× (ni +no), C : no×n and D : no× (ni +no).
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The Quantizer

The quantizer is ideal, producing integer outputs centered about zero. Quantizers with an
even number of levels are of the mid-rise type and produce outputs which are odd integers.
Quantizers with an odd number of levels are of the mid-tread type and produce outputs
which are even integers.
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Transfer curve of a quantizer with an
even number of levels.

Transfer curve of a quantizer with an
odd number of levels.
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yield a maximally-flat
STF.
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bn+1 is not shown since it would have to be
added to the quantizer input without delay,
which is presumed to not be allowed in this
structure. Note that this makes it impossible
to have a unity STF.
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DSFB Structure (Developed with D. Senderowicz 2014-03)
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