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Summary

Quantum algorithms are an area of intensive research thanks to their potential
of speeding up certain specific tasks exponentially. However, for the time being,
high error rates on the existing hardware realizations preclude the application
of many algorithms that are based on the assumption of fault-tolerant quan-
tum computation. On such noisy intermediate-scale quantum (NISQ) devices
(Preskill 2018), the exploration of the potential of heuristic quantum algorithms
has attracted much interest. A leading candidate for solving combinatorial opti-
mization problems is the so-called Quantum Approximate Optimization Algorithm
(QAOA) (Farhi, Goldstone, and Gutmann 2014). QAOA. j1 is a Julia package
(Bezanson et al. 2017) that implements the QAOA to enable the efficient classical
simulation typically required in research on the topic. It is based on Yao.jl
(Luo et al. 2019), (Luo et al. 2023) and Zygote.jl (Innes et al. 2019), (Innes
et al. 2023), making it both fast and automatically differentiable, thus enabling
gradient-based optimization. A number of common optimization problems such
as MaxCut, the minimum vertex-cover problem, the Sherrington-Kirkpatrick
model, and the partition problem are pre-implemented to facilitate scientific
benchmarking.

Additionally, QADA. j1 is the first package to implement the mean-field Approzi-
mate Optimization Algorithm (mean-field AOA) (Misra-Spieldenner et al. 2023),
which is a quantum-inspired classical algorithm derived from the QAOA via the
mean-field approximation. Note that QAOA. j1 has already been used extensively
during the research leading to (Misra-Spieldenner et al. 2023). This novel
algorithm can be useful in assisting the search for quantum advantage since it
provides a tool to discriminate (combinatorial) optimazation problems that be
solved classically from those that cannot.



Statement of need

The demonstration of quantum advantage for a real-world problem is yet out-
standing. Identifying such a problem and performing the actual demonstration
on existing hardware will not be possible without intensive (classical) simulations.
This makes a fast and versatile implementation of the QAOA rather desirable.
As shown in Figure 1, QADA. j1 is significantly faster than PennyLane (Bergholm
et al. 2018), one of its main competitors in automatically differentiable QAOA
implementations. While Tensorflow Quantum (Broughton et al. 2023) supports
automatic differentiation, there exists, to the author’s knowledge, no dedicated
implementation of the QAOA. The class QAOA offered by Qiskit (A-tA-v et al.
2021) must be provided with a precomputed gradient operator, i.e. it does not
feature automatic differentiation out of the box.

As already mentioned, QAOA. j1 is also the first package to implement the mean-
field AOA, which is thus made available to researchers working on the topic.
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Figure 1: Comparison of run times between PennyLane (Bergholm et al. 2018)
and QADA. j1 on an Apple M1 processor. The benchmarks At are retrieved by
performing 128 steps with the respective gradient optimizer on the same instance
of size N of the minimum vertex-cover problem.



Mathematics

QAOA

The cost function of the QAOA for a general quadratic optimization problem is
typically defined as
N
C=3 |n+ X 2| 2

where the h;, J;; are real numbers encoding the problem in question, and Zi’j
denote Pauli matrices. Similarly, the conventional mizer or driver of the QAOA

is given by
N
H=Y %,
i=1

where the X; are again Pauli matrices. We also introduce the initial quantum
state
o) = [+ ® - ®@[+)N.

Note that this is the maximum-energy eigenstate of the driver D since
(0| D)oy = N. With these prerequisites, the variational quantum state of the
QAOA becomes

[¥(B,7)) = exp (*iﬁpﬁ) exp (*ivpé) -+ exp (*imf?) exp (*i%é) [ho)-
The goal is then to mazimize the expectation value

Ey(B,7) = (0(8,MICl(B,7))

over the variational parameters 3,-. Note that QAOA. j1 furthermore supports
others drivers, e.g.

b= Y (%547).
(i.5)€€
where € is the set of connections or edges for which the coupling matrix J;; is
non-zero.

Mean-Field AOA
In close analogy to the QAOA, the mean-field Hamiltonian reads

N N
HO =20F [+ 3 gn 0] )+ 500 Y ni (1)

i= j>i

The mean-field evolution is then given by

ni(p) = [ VP (R)V" (k)i (0),
k=1



where the initial spin vectors are n;(0) = (1,0,0)7 for all i = 1,..., N, and the
rotation matrices ‘ZD’ P are defined as

1 0 0
VD(k) =10 cos(2A;8k) —sin(2A;8k)
0 sin(2A;8k) cos(2A; k)

nd
? cos(2m;(tp—1)vk) —sin(2my;(tg—1)vk)
VP (k) = | sin(2ms(tr-1)ve)  cos(2mi(te—1))
0 0

= O O

with the magnetization

N
mit) =hi+ Y Jyni ().
j=1
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