Benders Decomposition for Norm-1 Regression with ParameterJuMP.jl

Joaquim Dias Garcia
March 9th 2019

Introduction

This notebook is parte of the talk on ParameterJuMP.jl in the third annual JuMP-dev workshop, held in Santiago, Chile, 2019

The main purpose of this notebook is to show an application of ParameterJuMP.jl. ParameterJuMP is well suited for Benders like decompositions therefore we shall try to demonstrate the usage of the library in one of the simplest problems that fits in the Benders decomposition framework. Norm-1 regression, which is a particular case of quantile regression is one of such problems.

Note that this is NOT the standard technique to solve Norm-1 regressions. Taylor made methods are available here for instance.

This notebook will require the following libraries:

ParameterJuMP itself

using ParameterJuMP

JuMP: the julia mathematical programming modeling tool

using JuMP

GLPK: A linear programing solver (other solvers could be used - such as Clp, Xpress, Gurobi, CPLEX and so on)

using GLPK
const OPTIMIZER = GLPK.Optimizer;

TimerOutputs: a time measuring library to demonstrate the advantage of using ParameterJuMP

using TimerOutputs

The following two julia default libraries

using LinearAlgebra # just use the dot function
using Random # to use random number generators

Plots library

using Plots
gr(); # plotting backend

Norm-1 regression

We will apply Norm-1 regression to the Linear Regression problem. Linear regression is a statistical tool to obtain the relation between one dependent variable and other explanatory variables. In other words, given a set of $n$ explanatory variables $X = \{ X_1, \dots, X_n \}$ we would like to obtain the best possible estimate for $Y$. In order to accomplish such a task we make the hypothesis that $Y$ is aapproximately linear function of $X$:

\[ Y = \sum_{j =1}^n \beta_j X_j + \varepsilon \]

where $\varepsilon$ is some random error.

The estimation of the $\beta$ values relies on observations of the variables: $\{y^i, x_1^i, \dots, x_n^i\}_i$

In this notebook we will solve a problem where the explanatory variables are sinusoids of differents frequencies

First, we define the number of explanatory variables and observations

const N_Candidates = 100
const N_Observations = 600
const N_Nodes = 100

const Observations = 1:N_Observations
const Candidates = 1:N_Candidates
const Nodes = 1:N_Nodes
;

Initialize a random number generator to keep results deterministic

rng = Random.MersenneTwister(123);

Building regressors (explanatory) sinusoids

const X = zeros(N_Candidates, N_Observations)
const time = [obs / N_Observations * 1 for obs in Observations]
for obs in Observations, cand in Candidates
    t = time[obs]
    f = cand
    X[cand, obs] = sin(2 * pi * f * t)
end

Define coefficients

β = zeros(N_Candidates)
for i  Candidates
    if rand(rng) <= (1-i/N_Candidates)^2 && i<=100
        β[i] = 4*rand(rng)/i
    end
end
println("First coefs: $(β[1:min(10, N_Candidates)])")
First coefs: [3.76206, 0.790906, 0.883406, 0.0521332, 0.0870966, 0.315345, 
0.0, 0.142849, 0.122586, 0.232927]

Create noisy observations

const y = X' * β .+ 0.1*randn(rng, N_Observations)

plt = plot(time, y,
    xlabel = "Time (s)", ylabel = "Amplitude")
plot!(plt, time, X'[:,1])
plot!(plt, time, X'[:,3])
plot!(plt, time, X'[:,9])

The classic tool to estimate linear regression models is the Least Squares method.

The least squares method relies on solving the optimization problem:

\[ \max \Bigg\{ \sum_{i \in Observations} \Big( y_i - \sum_{j \in Candidates} \beta_j x_{i,j} \Big) ^2 \Bigg\} \]

In Norm-1 regression, the quadratic functions are replaced by absolute values:

\[ \max\Bigg\{ \sum_{i \in Observations} \Big| y_i - \sum_{j \in Candidates} \beta_j x_{i,j} \Big| \Bigg\} \]

This optimization problem can be recast as a Linear Programming Problem:

\[ \begin{align} & \min_{\varepsilon^{up}, \varepsilon^{dw}, \beta} && \sum_{i \in Observations} {\varepsilon^{up}}_i + {\varepsilon^{dw}}_i && \notag \\ & \text{subject to} && {\varepsilon^{up}}_i \geq + y_i - \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in Observations \notag \\ & && {\varepsilon^{dw}}_i \geq - y_i + \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in Observations \notag \\ & && {\varepsilon^{up}}_i, {\varepsilon^{dw}}_i \geq 0 && \forall i \in Observations \notag \\ \end{align} \]

Where $Observations$ is the set of all observations.

This linear programming problem can be described in julia with JuMP

function full_model_regression()
    time_build = @elapsed begin # measure time to create a model

        # initialize a optimization model
        full_model = Model(with_optimizer(OPTIMIZER))

        # create optimization variables of the problem
        @variables(full_model, begin
            ɛ_up[Observations] >= 0
            ɛ_dw[Observations] >= 0
            β[1:N_Candidates]
            # 0 <= β[Candidates] <= 8
        end)

        # define constraints of the model
        @constraints(full_model, begin
            ɛ_up_ctr[i in Observations],
                ɛ_up[i] >= + sum(X[j,i] * β[j] for j  Candidates) - y[i]
            ɛ_dw_ctr[i in Observations],
                ɛ_dw[i] >= - sum(X[j,i] * β[j] for j  Candidates) + y[i]
        end)

        # construct the objective function to be minimized
        @objective(full_model, Min, sum(ɛ_up[i] + ɛ_dw[i] for i  Observations))
    end

    # solve the problem
    time_solve = @elapsed optimize!(full_model)

    println("First coefficients in solution: $(value.(β)[1:min(10, N_Candidates)])")
    println("Objective value: $(objective_value(full_model))")
    println("Time in solve: $time_solve")
    println("Time in build: $time_build")

    return nothing
end
full_model_regression (generic function with 1 method)

Now we execute the functionthat builds the model and solves it

N_Observations*N_Candidates < 10_000_000 && full_model_regression()
First coefficients in solution: [3.76377, 0.790012, 0.878022, 0.0563155, 0.
0876301, 0.314878, 0.00317523, 0.148887, 0.120253, 0.242875]
Objective value: 42.627682385307324
Time in solve: 2.525386632
Time in build: 0.373113029

Benders decompositon

Benders decompostions is used to solve large optimization problems with some special characteristics. LP's can be solved with classical linear optimization methods such as the Simplex method or Interior point methods provided by solvers like GLPK. However, these methods do not scale linearly with the problem size. In the Benders decomposition framework we break the problem in two pieces: A master and a slave problem.

Of course some variables will belong to both problems, this is where the cleverness of Benders kicks in: The master problem is solved and passes the shared variables to the slave. The slave problem is solved with the shared variables FIXED to the values given by the master problem. The solution of the slave problem can be used to generate a constraint to the master problem to describe the linear approximation of the cost function of the shared variables. In many cases, like stochastic programming, the slave problems have a interesting structure and might be broken in smaller problem to be solved in parallel.

We will descibe the decomposition similarly to what is done in: Introduction to Linear Optimization, Bertsimas & Tsitsiklis (Chapter 6.5): Where the problem in question has the form

\[ \begin{align} & \min_{x, y_k} && c^T x && + f_1^T y_1 && + \dots && + f_n^T y_n && \notag \\ & \text{subject to} && Ax && && && && = b \notag \\ & && B_1 x && + D_1 y_1 && && && = d_1 \notag \\ & && \dots && && \dots && && \notag \\ & && B_n x && && && + D_n y_n && = d_n \notag \\ & && x, && y_1, && && y_n && \geq 0 \notag \\ \end{align} \]

Slave

Given a solution for the $x$ variables we can define the slave problem as

\[ \begin{align} z_k(x) \ = \ & \min_{y_k} && f_k^T y_k && \notag \\ & \text{subject to} && D_k y_k && = d_k - B_k x \notag \\ & && y_k && \geq 0 \notag \\ \end{align} \]

The $z_k(x)$ function represents the cost of the subproblem given a solution for $x$. This function is a convex function because $x$ affects only the right hand side of the problem (this is a standard resutls in LP theory).

For the special case of the Norm-1 reggression the problem is written as:

\[ \begin{align} z_k(\beta) \ = \ & \min_{\varepsilon^{up}, \varepsilon^{dw}} && \sum_{i \in ObsSet(k)} {\varepsilon^{up}}_i + {\varepsilon^{dw}}_i && \notag \\ & \text{subject to} && {\varepsilon^{up}}_i \geq + y_i - \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in ObsSet(k) \notag \\ & && {\varepsilon^{dw}}_i \geq - y_i + \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in ObsSet(k) \notag \\ & && {\varepsilon^{up}}_i, {\varepsilon^{dw}}_i \geq 0 && \forall i \in ObsSet(k) \notag \\ \end{align} \]

The collection $ObsSet(k)$ is a sub-set of the NObservations. Any partition of the NObservations collection is valid. In this notebook we will partition with the function:

function ObsSet(K)
    obs_per_block = div(N_Observations, N_Nodes)
    return (1 + (K - 1) * obs_per_block):(K * obs_per_block)
end
ObsSet (generic function with 1 method)

Which can be written in JuMP as follows.

At this point we make a small detour to highlight the ParameterJuMP application. Every time you a find a IF block with the flag PARAM it means that we have two different implmentatins of the method: one relying on ParameterJuMP and the other using pure JuMP.

function slave_model(PARAM, K)

    # initialize the JuMP model
    slave = if PARAM
        # special constructor exported by ParameterJuMP
        # to add the functionality to the model
        ModelWithParams(with_optimizer(OPTIMIZER))
    else
        # regular JuMP constructor
        Model(with_optimizer(OPTIMIZER))
    end

    # Define local optimization variables for norm-1 error
    @variables(slave, begin
        ɛ_up[ObsSet(K)] >= 0
        ɛ_dw[ObsSet(K)] >= 0
    end)

    # create the regression coefficient representation
    if PARAM
        # here is the main constructor of the Parameter JuMP packages
        # it will create model *parameters* instead of variables
        # variables are added to the optimization model, while parameters
        # are not. Parameters are merged with LP problem constants and do not
        # increase the model dimensions.
        β = add_parameters(slave, zeros(N_Candidates))
    else
        # Create fixed variables
        @variables(slave, begin
            β[Candidates]
            β_fixed[1:N_Candidates] == 0
        end)
        @constraint(slave, β_fix[i in Candidates], β[i] == β_fixed[i])
    end

    # create local constraints
    # note that *parameter* algebra is implemented just like variables
    # algebra. We can multiply parameters by constants, add parameters,
    # sum parameters and varaibles and so on.
    @constraints(slave, begin
        ɛ_up_ctr[i in ObsSet(K)],
            ɛ_up[i] >= + sum(X[j,i] * β[j] for j  Candidates) - y[i]
        ɛ_dw_ctr[i in ObsSet(K)],
            ɛ_dw[i] >= - sum(X[j,i] * β[j] for j  Candidates) + y[i]
    end)
    # ATTENTION β[j] * X[j,i] Is much slower

    # create local objective function
    @objective(slave, Min, sum(ɛ_up[i] + ɛ_dw[i] for i  ObsSet(K)))

    # return the correct group of parameters
    if PARAM
        return (slave, β)#β_upper, β_lower)
    else
        return (slave, β, β_fixed, β_fix)#β_upper, β_lower)
    end
end
slave_model (generic function with 1 method)

Master

Now that all pieces of the original problem can be representad by the convex $z_k(x)$ functions we can recast the problem in the the equivalent form:

\[ \begin{align} & \min_{x} && c^T x + z_1(x) + \dots + z_n(x) && \notag \\ & \text{subject to} && Ax = b && \notag \\ & && x \geq 0 && \notag \\ \end{align} \]

However we cannot pass a problem in this for to a linear programming solver (it could be passed to other kinds of solvers).

Another standart result of optimization theory is that a convex function an be represented by its supporting hyper-planes:

\[ \begin{align} z_k(x) \ = \ & \min_{z, x} && z && \notag \\ & \text{subject to} && z \geq \pi_k(\hat{x}) (x - \hat{x}) + z_k(\hat{x}), \ \forall \hat{x} \in dom(z_k) && \notag \\ \end{align} \]

Then we can re-write (again) the master problem as

\[ \begin{align} & \min_{x, z_k} && c^T x + z_1 + \dots + z_n \notag \\ & \text{subject to} && z_i \geq \pi_i(\hat{x}) (x - \hat{x}) + z_i(\hat{x}), \ \forall \hat{x} \in dom(z_i), i \in \{1, \dots, n\} \notag \\ & && Ax = b \notag \\ & && x \geq 0 \notag \\ \end{align} \]

Which is a linear program!

However, it has infinitely many constraints !!!

We can relax thhe infinite constraints and write:

\[ \begin{align} & \min_{x, z_k} && c^T x + z_1 + \dots + z_n \notag \\ & \text{subject to} && Ax = b \notag \\ & && x \geq 0 \notag \\ \end{align} \]

But now its only an underestimated problem. In the case of our problem it can be written as:

\[ \begin{align} & \min_{\varepsilon, \beta} && \sum_{i \in Nodes} \varepsilon_i \notag \\ & \text{subject to} && \varepsilon_i \geq 0 \notag \\ \end{align} \]

This model can be written in JUMP

function master_model(PARAM)
    master = Model(with_optimizer(OPTIMIZER))
    @variables(master, begin
        ɛ[Nodes] >= 0
        β[1:N_Candidates]
        # 0 <= β[Candidates] <= 8
    end)
    @objective(master, Min, sum(ɛ[i] for i  Nodes))
    sol = zeros(N_Candidates)
    return (master, ɛ, β, sol)
end
master_model (generic function with 1 method)

The method to solve the master problem and query its solution is given here:

function master_solve(PARAM, master_model)
    model = master_model[1]
    β = master_model[3]
    optimize!(model)
    return (value.(β), objective_value(model))
end
master_solve (generic function with 1 method)

Supporting Hyperplanes

With these building blocks in hand, we can start building the algorithm.

So far we know how to:

  • Solve the relaxed master problem

  • Obtain the solution for the $\hat{x}$ (or $\beta$ in our case)

Now we can:

  • Fix the values of $\hat{x}$ in the slave problems

  • Solve the slave problem

  • query the solution of the slave problem to obtain the supporting hyperplane

the value of $z_k(\hat{x})$, which is the objectie value of the slave problem

and the derivative $\pi_k(\hat{x}) = \frac{d z_k(x)}{d x} \Big|_{x = \hat{x}}$ the derivative is the dual variable associated to the variable $\hat{x}$, which results by applying the chain rule on the constraints duals.

These new steps are executed by the function:

function slave_solve(PARAM, model, master_solution)
    β0 = master_solution[1]
    slave = model[1]

    # The first step is to fix the values given by the master problem
    @timeit "fix" if PARAM
        # *parameters* can be set to new values and the optimization
        # model will be automatically updated
        β = model[2]
        fix.(β, β0)
    else
        # JuMP also has the hability to fix variables to new values
        β_fixed = model[3]
        β_fix = model[4]
        fix.(β_fixed, β0)
    end

    # here the slave problem is solved
    @timeit "opt" optimize!(slave)

    # query dual variables, which are sensitivities
    # they represent the subgradient (almost a derivative)
    # of the objective function for infinitesimal variations
    # of the constants in the linear constraints
    @timeit "dual" if PARAM
        # we can query dual values of *parameters*
        π = dual.(β)
    else
        # or, in pure JuMP, we query the duals form
        # constraints that fix the values of our regression
        # coefficients
        π = dual.(β_fix)
    end

    # π2 = shadow_price.(β_fix)
    # @show sum(π .- π2)
    obj = objective_value(slave)
    rhs = obj - dot(π, β0)
    return (rhs, π, obj)
end
slave_solve (generic function with 1 method)

Now that we have cutting plane in hand we can add them to the master problem:

function master_add_cut(PARAM, master_model, cut_info, node)
    master = master_model[1]
    ɛ = master_model[2]
    β = master_model[3]

    rhs = cut_info[1]
    π = cut_info[2]

    @constraint(master,
        ɛ[node] >= sum(π[j] * β[j] for j  Candidates) + rhs)
end
master_add_cut (generic function with 1 method)

Algorithm wrap up

The complete algorithm is

  • Solve the relaxed master problem

  • Obtain the solution for the $\hat{x}$ (or $\beta$ in our case)

  • Fix the values of $\hat{x}$ in the slave problems

  • Solve the slave problem

  • query the solution of the slave problem to obtain the supporting hyperplane

  • add hyperplane to master problem

  • repeat

Now we grab all the pieces that we built and we write the benders algorithm by calling the above function in a proper order.

The macros @timeit are use to time each step of the algorithm.

function decomposed_model(PARAM)
    reset_timer!() # reset timer fo comparision
    time_init = @elapsed @timeit "Init" begin
        println("Initialize decomposed model")

        # Create the mastter problem with no cuts
        println("Build master problem")
        @timeit "Master" master = master_model(PARAM)

        # initialize solution for the regression coefficients in zero
        println("Build initial solution")
        @timeit "Sol" solution = (zeros(N_Candidates), Inf)
        best_sol = deepcopy(solution)

        # Create the slave problems
        println("Build slave problems")
        @timeit "Slaves" slaves = [slave_model(PARAM, i) for i  Candidates]

        # Save initial version of the slave problems and create
        # the first set of cuts
        println("Build initial cuts")
        @timeit "Cuts" cuts = [slave_solve(PARAM, slaves[i], solution) for i  Candidates]
    end

    UB = +Inf
    LB = -Inf

    println("Initialize Iterative step")
    time_loop = @elapsed @timeit "Loop"  for k in 1:80

        # Add cuts generated from each slave problem to the master problem
        @timeit "add cuts" for i  Candidates
            master_add_cut(PARAM, master, cuts[i], i)
        end

        # Solve the master problem with the new set of cuts
        # obtain new solution candidate for the regression coefficients
        @timeit "solve master" solution = master_solve(PARAM, master)

        # Pass the new candidate solution to each of the slave problems
        # Solve the slave problems and obtain cuttin planes
        # @show solution[2]
        @timeit "solve nodes" for i  Candidates
            cuts[i] = slave_solve(PARAM, slaves[i], solution)
        end

        LB = solution[2]
        new_UB = sum(cuts[i][3] for i  Candidates)
        if new_UB <= UB
            best_sol = deepcopy(solution)
        end
        UB = min(UB, new_UB)
        println("Iter = $k, LB = $LB, UB = $UB")

        if abs(UB - LB)/(abs(UB)+abs(LB)) < 0.05
            println("Converged!")
            break
        end
    end
    println("First coefficients in solution: $(solution[1][1:min(10, N_Candidates)])")
    println("Objective value: $(solution[2])")
    println("Time in loop: $time_loop")
    println("Time in init: $time_init")

    print_timer()

    return best_sol[1]
end
decomposed_model (generic function with 1 method)

Run benders decomposition with pure JuMP

GC.gc()
β1 = decomposed_model(false);
Initialize decomposed model
Build master problem
Build initial solution
Build slave problems
Build initial cuts
Initialize Iterative step
Iter = 1, LB = 0.0, UB = 243.75840787493047
Iter = 2, LB = 0.0, UB = 243.75840787493047
Iter = 3, LB = 5.38703942212879, UB = 243.75840787493047
Iter = 4, LB = 23.450565692848926, UB = 57.99604186311867
Iter = 5, LB = 33.35659250578711, UB = 49.12208051558014
Iter = 6, LB = 40.13581171936486, UB = 46.13064724732366
Iter = 7, LB = 41.97883975859214, UB = 43.66751463014951
Converged!
First coefficients in solution: [3.76754, 0.790079, 0.877002, 0.0552698, 0.
0869099, 0.314411, 0.00889972, 0.152491, 0.118625, 0.23782]
Objective value: 41.97883975859214
Time in loop: 4.018495623
Time in init: 6.44946216
 ─────────────────────────────────────────────────────────────────────────
                                  Time                   Allocations      
                          ──────────────────────   ───────────────────────
     Tot / % measured:         12.0s / 87.0%            771MiB / 97.4%    

 Section          ncalls     time   %tot     avg     alloc   %tot      avg
 ─────────────────────────────────────────────────────────────────────────
 Init                  1    6.45s  61.6%   6.45s    636MiB  84.7%   636MiB
   Cuts                1    4.89s  46.8%   4.89s    555MiB  73.9%   555MiB
     opt             100    2.30s  22.0%  23.0ms    265MiB  35.2%  2.65MiB
     dual            100    380ms  3.63%  3.80ms   26.2MiB  3.48%   268KiB
     fix             100   44.5ms  0.42%   445μs   3.34MiB  0.45%  34.2KiB
   Slaves              1    528ms  5.05%   528ms   69.5MiB  9.26%  69.5MiB
   Master              1    290μs  0.00%   290μs    147KiB  0.02%   147KiB
   Sol                 1   7.27μs  0.00%  7.27μs      928B  0.00%     928B
 Loop                  1    4.02s  38.4%   4.02s    115MiB  15.3%   115MiB
   solve nodes         7    478ms  4.57%  68.3ms   83.9MiB  11.2%  12.0MiB
     fix             700    228ms  2.18%   326μs   63.6MiB  8.47%  93.0KiB
     dual            700    123ms  1.18%   176μs   20.0MiB  2.66%  29.3KiB
     opt             700    118ms  1.13%   169μs    153KiB  0.02%     224B
   solve master        7    415ms  3.96%  59.3ms   1.36MiB  0.18%   199KiB
   add cuts            7    363ms  3.47%  51.9ms   28.0MiB  3.72%  3.99MiB
 ─────────────────────────────────────────────────────────────────────────

Run benders decomposition with ParameterJuMP

GC.gc()
β2 = decomposed_model(true);
Initialize decomposed model
Build master problem
Build initial solution
Build slave problems
Build initial cuts
Initialize Iterative step
Iter = 1, LB = 0.0, UB = 243.75840787492905
Iter = 2, LB = 6.882304672892165e-13, UB = 243.75840787492905
Iter = 3, LB = 5.387039422129757, UB = 243.75840787492905
Iter = 4, LB = 23.450565692849306, UB = 57.99604186314772
Iter = 5, LB = 33.35659250578788, UB = 49.122080515593424
Iter = 6, LB = 40.135811719367595, UB = 46.130647247335276
Iter = 7, LB = 41.97883975859797, UB = 43.66751463015694
Converged!
First coefficients in solution: [3.76754, 0.790079, 0.877002, 0.0552698, 0.
0869099, 0.314411, 0.00889972, 0.152491, 0.118625, 0.23782]
Objective value: 41.97883975859797
Time in loop: 2.349309788
Time in init: 2.266450046
 ─────────────────────────────────────────────────────────────────────────
                                  Time                   Allocations      
                          ──────────────────────   ───────────────────────
     Tot / % measured:         5.72s / 80.7%            105MiB / 100%     

 Section          ncalls     time   %tot     avg     alloc   %tot      avg
 ─────────────────────────────────────────────────────────────────────────
 Loop                  1    2.35s  50.9%   2.35s   23.9MiB  22.8%  23.9MiB
   solve master        7    403ms  8.74%  57.6ms   1.36MiB  1.30%   199KiB
   solve nodes         7    172ms  3.73%  24.6ms   8.40MiB  8.01%  1.20MiB
     opt             700    155ms  3.36%   222μs   7.08MiB  6.75%  10.4KiB
     dual            700   6.57ms  0.14%  9.38μs   1.09MiB  1.04%  1.59KiB
     fix             700   3.13ms  0.07%  4.47μs   54.7KiB  0.05%    80.0B
   add cuts            7   60.3ms  1.31%  8.62ms   14.1MiB  13.4%  2.01MiB
 Init                  1    2.27s  49.1%   2.27s   80.9MiB  77.2%  80.9MiB
   Cuts                1    469ms  10.2%   469ms   32.4MiB  30.9%  32.4MiB
     opt             100   70.0ms  1.52%   700μs   10.4MiB  10.0%   107KiB
     dual            100   1.63ms  0.04%  16.3μs    159KiB  0.15%  1.59KiB
     fix             100    523μs  0.01%  5.23μs   7.81KiB  0.01%    80.0B
   Slaves              1    391ms  8.47%   391ms   48.3MiB  46.1%  48.3MiB
   Master              1    303μs  0.01%   303μs    147KiB  0.14%   147KiB
   Sol                 1    856ns  0.00%   856ns      928B  0.00%     928B
 ─────────────────────────────────────────────────────────────────────────

Plot resulting time series from the benders base estimations

const y1 = X' * β1
const y2 = X' * β2

plt = plot(time, y,
    xlabel = "Time (s)", ylabel = "Amplitude")
plot!(plt, time, y1)
plot!(plt, time, y2)

Acknowledgments

ParameterJuMP was developed by Joaquim Dias Garcia (@joaquimg) and Benoît Legat (@blegat)