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Summary

The use of a flat-facet finite element with three nodes and six degrees of freedom
per node for modeling of linear wave-propagation events is discussed. The triangular
shell finite element was presented in a preceding publication. The main novelty of the
current approach is the treatment of the drilling rotations that decouples the drilling
degree of freedoms on the global level, and hence makes it possible to eliminate
negative effects of these degrees of freedom on the explicit time-stepping algorithms
employed to compute the dynamic response, such as deterioration in accuracy or
artificially reduced time step. The element is shown to be robust for wave propagation
simulations, and its performance is illustrated with examples including guided-wave
scenarios.
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INTRODUCTION

Structures modeled as shells are commonly employed in the civil and marine engineering, aerospace, aeronautical and auto-
mobile industries. Formulations of shell finite element models are quite complex compared to other structural elements, and,
not surprisingly, over the past several decades, many hundreds of papers have appeared on the subject of shell finite element
analysis. We refer to older1,2 and recent3,4 reviews.

An important application for models of dynamic (transient) response of structures, including thin-walled structures conducive
to representation as shells, are guided waves as used in Structural Health Monitoring5,6,7. The finite element method (FEM)
provides the most commonly used technique for simulation and modeling of guided waves. In the present work we illustrate
the performance of our approach on applications from the guided-wave domain. Note well: This should not be construed as
implication that the proposed methodology is only applicable in this area.

Clearly, traditional finite element techniques are not the only suitable technology in this application domain. The 10-20 ele-
ments per wavelength commonly recommended to achieve decent results, demand efficient, fast-running models8. The Spectral
Element Method (SEM) is promising, as it can theoretically deliver high accuracy, aided by the nodal numerical integration
rules that can produce diagonal mass matrices9. Finite Difference (FD) methods in the form of the Local Interaction Simula-
tion Approach (LISA) represent another recently developed promising model10,11,12,13. Parallel computational implementation
of LISA for Lamb wave simulation in structures with complex geometry using graphical processing units (GPU) can lead to
substantial speedups14.

The Belytschko-Lin-Tsay shell15 is in many respects still leading the pack of explicit finite element formulations16. There
have been incremental improvements, of course17, and radical departures such as triangular shells with discrete Kirchhoff
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constraints18, or quadrilaterals with membrane response incorporating drilling degrees freedom19. The shell finite element tech-
nology also keeps developing to incorporate modern computing devices 20,16. There is a creative tension between two approaches:
perform a lot of numerical calculations with limited data movement21, or perform very simple numerical operations on a large
number of simple entities22. The presented methodology belongs in the second camp.

A flat facet finite element with three nodes and six degrees of freedom per node for linear static and dynamic analysis of thick
and thin shells was presented in a preceding publication23. The membrane response was modeled with constant strain triangles
and the bending response and the transverse shear were treated with an improved version of the discrete-shear-gap technique.
The main novelty of that approach was the robust treatment of the drilling rotations. The drilling degrees of freedom were
decoupled from the bending and twisting, and from each other. The element was shown to be robust for extremely thin shells,
and passed challenging tests such as the Raasch hook problem and the hyperbolic paraboloid test. Performance was illustrated
with static and free-vibration examples, including branched and folded shells.

The decoupling of the drilling degrees of freedom from the dynamical balance equations prompted an investigation into the
possibility of using the flat-facet shell finite element in the simulations of linear fast transient waves in shells (guided waves) using
explicit integration techniques. The plan for the current article is to very briefly review the formulation of the model of linear
wave propagation in shell structures and the algorithm of explicit time stepping in Section 1. For easy reference we summarize
the formulation of the elastic properties of the triangular finite elements in Section 2. Then, in Section 3, we rephrase the main
points of the element basis to nodal basis to global basis transformations that will decouple the internal forces from the drilling
degrees of freedom. That will prepare the ground for a discussion of the element mass matrix, selection of the parameters for the
drilling degrees of freedom (stiffness and mass), and the effects of that choice on the explicit time integration algorithm. Finally,
the properties of the present formulation are illustrated on a number of transient dynamics problems in Section 4. In addition to
benchmark comparisons, we also demonstrate use in guided-wave simulations, including scattering from flaws. Finally, in the
Conclusions we offer some remarks on potential future extensions. The reader should understand the present paper as a step on
the path to a more general nonlinear capability.

1 EXPLICIT DYNAMICS OF LINEAR WAVE PROPAGATION IN SHELL STRUCTURES

Direct time integration is widely used in finite element solutions of structural dynamics and transient wave propagation prob-
lems24. There are two categories: explicit and implicit methods. A time integration method is implicit if the solution procedure
requires the solution of a coupled system of equations. In an explicit method, the solution of a coupled system of equations is
avoided. Implicit methods require a much larger computational effort per time step when compared with explicit methods, but
implicit methods can be designed to have unconditional stability in linear analysis, and hence the time step size can be selected
based on the characteristics of the problem to be integrated. Explicit methods may require only vector calculations and the com-
putational cost per time step is consequently much lower, but an explicit method can be only conditionally stable (the condition
being the length of the time step that can be taken without the solution blowing up). As a consequence, explicit methods may
be effective when the time step size required by the stability limit is similar to the time step size needed to describe the physical
problem. This is typically the case in wave propagation analyses.

After discretization in space with finite elements, the dynamic balance equation (Newton’s equation) of linear wave
propagation may be stated as

𝐌𝐀 = 𝐅 −𝐊𝐔 − 𝐂𝐕 , (1)

where 𝐀 is the vector of accelerations, 𝐔 and 𝐕 are the vectors of displacements and velocities respectively, and 𝐌, 𝐊, and 𝐂 are
the mass, (symmetric) stiffness, and damping matrices. The initial value problem is solved starting from the initial displacements
and velocities, i.e. 𝐔(𝑡 = 0), 𝐕(𝑡 = 0) are given.

There are many suitable explicit-integration algorithms used in structural wave propagation problems 25,26,27,24,28,29. In this
work we only apply the commonly used centered difference method. There are several possible re-formulations, cited for instance
in Reference 26, and Algorithm 1 describes a variant particularly efficient with a diagonal damping matrix, which is what we
assume in the examples below.

Algorithm 1 runs with a fixed time step. The time step needs to be as long as possible, for accuracy reasons, yet as short as
necessary to prevent the solution from blowing up. The classical bound is provided by the estimate30

Δ𝑡 ≤ 2
max𝜔𝑗

, (2)
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Algorithm 1 Algorithm “Centered Difference Explicit Integration”.
Require: Stiffness matrix𝐊, diagonal mass matrix𝐌, diagonal damping matrix𝐂, initial displacement vector𝐔, initial velocity

vector 𝐕, loading vector 𝐅, time step Δ𝑡, number of steps to take 𝑛.
𝐌̃ = 𝐌 + (Δ𝑡∕2)𝐂 ⊳ Compute effective left hand side matrix, 𝐌̃
t=0 ⊳ Initialize time
𝐌̃𝐀 = 𝐅(𝑡) ⊳ Compute initial acceleration, 𝐀
for 𝑠 ∈ 1 ∶ 𝑛 do ⊳ For all time steps

𝑡 += Δ𝑡 ⊳ Update the time
𝐔 += 𝐕 + ((Δ𝑡2)∕2)𝐀 ⊳ Update displacements
𝐋 = 𝐅(𝑡) −𝐊𝐔 − 𝐂 (𝐕 + (Δ𝑡∕2)𝐀) ⊳ Update right hand side vector
𝐕 += (Δ𝑡∕2)𝐀 ⊳ Update velocity with the previous acceleration
𝐀 = 𝐋∕𝐌̃ ⊳ Update acceleration
𝐕 += (Δ𝑡∕2)𝐀 ⊳ Update velocity with the current acceleration

end for
Here += represents an incrementation operator where the vector expression on the right is added to the destination vector
on the left. The symbolically-expressed solution of the equations for the new acceleration are an elementwise division of two
vectors, 𝐴𝑑 = 𝐿𝑑∕𝑀𝑑𝑑 for all degrees of freedom 𝑑.

where max𝜔𝑗 is the algebraically largest angular frequency of the undamped free vibration problem

−𝜔2
𝑗𝐌𝛟 = −𝐊𝛟 . (3)

In this work, we solve for max𝜔𝑗 by applying the power method to equation (3). It is quite quick and accurate. We only consider
Rayleigh mass-proportional damping, in which case the damping matrix reads

𝐂 = 2𝜔𝑑𝜉𝐌 . (4)

Here 𝜔𝑑 is a fixed frequency at which an appropriate value of the critical-damping ratio 𝜉 was determined. Note that this form
of the damping matrix does not affect the stable time step.

In order to apply Algorithm 1, the discrete finite element model needs to be derived. In the next section we will describe the
elastic properties of the shell finite element. Then, the handling of the drilling degrees of freedom will be discussed in detail.

2 PROPERTIES OF THE ELEMENT IN ITS FRAME

The properties of the elastic stiffness of the flat-facet triangular shell element have been developed in detail in Reference 23.
We shall only repeat a few key relations.

2.1 Element cartesian frame basis vectors
As shown in Figure 1, the element carries a frame (basis) attached at its centroid, defined by the two nodes 1 and 2 which
determine the direction of the local 𝑥1 axis. The normal is evidently determined by the plane of the triangle. The two coordinates
given by the basis vectors 𝐄1 and 𝐄2 are referred to as 𝑥1 and 𝑥2. The elastic properties of the flat facet shell element are entirely
expressed in this local element basis.

We write [𝑄]𝐵 to indicate that the quantity 𝑄 is expressed on the cartesian basis 𝐁. In this work we formulate the global
degrees of freedom in the global cartesian basis where 𝐆𝑗 is the 𝑗-th basis vector. The element-attached basis 𝐄 is expressed
in the global cartesian basis 𝐆 as

[𝐄]𝐺 =
[[

𝐄1
]

𝐺 ,
[

𝐄2
]

𝐺 ,
[

𝐄3
]

𝐺

]

. (5)

Here
[

𝐄3
]

𝐺 is the normal to the element surface expressed on the global cartesian basis 𝐆.
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2.2 Degrees of freedom
We assume three translations and three rotations per node, so that the 18 degrees of freedom of the triangle on the element basis
𝐄 are

[

𝐪
]

𝐸 =
⎡

⎢

⎢

⎣

[1𝐪
]

𝐸
[2𝐪

]

𝐸
[3𝐪

]

𝐸

⎤

⎥

⎥

⎦

, (6)

where the nodal degrees of freedom consist of displacements 𝐝 and rotations 𝐫
[𝑘𝐪

]

𝐸 =
[ [𝑘𝐝

]

𝐸
[𝑘𝐫

]

𝐸

]

. (7)

The rotation components are described with the right hand side rule: positive when turning about the axis with the thumb
pointing along the axis, and the fingers describing the turning direction. The rotation

[𝑘𝐫3
]

𝐸 =
[𝑘𝜃3

]

𝐸 , the so called drilling
degree of freedom (dof), is not associated with any stiffness at the element level. Hence, as the rotation about the normal is not
associated with a physical response of the element, we may also refer to this element as a 5-dof per node element. However,
for convenience we preserve the 6 dof per node form of the elementwise matrix. One of the benefits is that the transformation
matrices are all square.

2.3 Elementwise stiffness matrix
The overall stiffness 18 × 18 matrix of the element in the local element coordinates is

[𝐊]𝐸 =
[

𝐊𝑚]

𝐸 +
[

𝐊𝑏]

𝐸 +
[

𝐊𝑠]

𝐸 , (8)

where the constituent parts are [𝐊𝑚]𝐸 for the membrane response,
[

𝐊𝑏]

𝐸 for the bending, and [𝐊𝑠]𝐸 for the transverse shear
response. This stiffness matrix has a rank of 8, and hence it is rank-deficient: it has six rigid body modes, one higher order
torsional zero-energy mode31, and three zero energy modes due to the drilling rotations not being associated with any stiffness.

The torsional mode corresponds to the rotation of the bottom surface of the shell relative to the top surface about the normal
to the element surface. The torsional mode is uncoupled from the flexural modes31, and it is incommunicable in meshes of more
than two connected triangles. The drilling rotation degrees of freedom will be treated in the next section.

3 HANDLING OF THE DRILLING ROTATIONS

In order to remove the rank defect of the element stiffness matrix to ensure an appropriate rank of the global stiffness matrix
and also to handle the transfer of the twisting moments between elements, the element formulation proposed in Reference 23
introduced a third basis, the nodal normal basis.

First, what is meant by a “normal”? In this context, we mean by a nodal normal a direction which is either the exact normal
to the original smooth surface (as opposed to the discrete triangular approximation to it) at the location of the node, or it is an
approximation of the exact normal, most likely derived by weighted averaging of the normals from each element connected to
the node.

At each node that can be uniquely associated with a nodal normal, all the connected elements will agree on this nodal normal.
At nodes at which a unique normal cannot be defined (where it does not make sense), such as at folds (creases), or along branching
curves where multiple sheets of the shell meet, the connected elements will only refer to their own normal instead of the nodal
normal.

At nodes with a valid (unique) nodal normal, the connected finite elements will set up an ad hoc basis. Figure 1 shows that
the nodal normals at the nodes will in general be different from the normals to the elements connected at the node.

When calculating the elementwise matrices (stiffness or mass) of any given element, Cartesian coordinate basis 𝑘𝐀 is con-
structed for each of the three nodes of the element such that the basis vector

[𝑘𝐀3
]

𝐸 at node 𝑘 coincides with the normal at the
node 𝑘:

[𝑘𝐀3
]

𝐸 =
[𝑘𝐧

]

𝐸 = [𝐄]𝑇𝐺
[𝑘𝐧

]

𝐺. Here we assume that when the nodal normal is not unique at a node 𝑗, for the purpose
of the calculations on the element this normal is replaced with the element normal,

[𝑗𝐀3
]

𝐸 =
[𝑗𝐧

]

𝐸 =
[

𝐄3
]

𝐸 = [0, 0, 1]𝑇 .
The remaining Cartesian basis vectors of the nodal basis are obtained by rotating the element frame [𝐄]𝐸 = [𝟏] through the

angle 𝜙 subtended by
[𝑘𝐧

]

𝐸 and
[

𝐄3
]

𝐸 . (Refer to Figure 1.) Hence, the vectors
[𝑘𝐀1

]

𝐸 and
[𝑘𝐀2

]

𝐸 are obtained from
[

𝐄1
]

𝐸 and
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FIGURE 1 Nodal cartesian basis produced by rotation of the element basis so that the rotated element normal coincides with
the nodal normal.

[

𝐄2
]

𝐸 by rotating through the rotation vector 𝛟 =
[

𝐄3
]

𝐸 ×
[𝑘𝐀3

]

𝐸 , i.e.
[𝑘𝐀𝑗

]

𝐸 =
[

exp (𝛟)
]

𝐸

[

𝐄𝑗
]

𝐸 . (9)

As a result, each element has three bases defined at its nodes, in general different for each node 𝑘
[𝑘𝐀

]

𝐸 =
[𝑘 [𝐀1

]

𝐸 , 𝑘
[

𝐀2
]

𝐸 , 𝑘
[

𝐀3
]

𝐸

]

. (10)

Each element connected to a given node will compute for this node a different set of basis vectors (10). These different bases
will however agree on the direction of the third vector, 𝑘𝐀3 = 𝑘𝐧, provided the nodal normal at node 𝑘 is unique.

3.1 Stiffness matrix
The transformation of the elements stiffness matrix now proceeds in two steps23. In the first step, we transform the element
stiffness matrix into the nodal basis using the transformation

[𝐊]𝐴 =
[

𝐓𝐴]𝑇
𝐸 [𝐊]𝐸

[

𝐓𝐴]

𝐸 . (11)

The transformation matrix
[

𝐓𝐴]

𝐸 takes as input a vector in the nodal basis (𝐀) and outputs a vector in the element basis (𝐄).
We construct the 3 × 3 matrices

[

𝑘𝐀̃
]

𝐸
=

[

[𝑘𝐀1∶2,1∶2
]

𝐸 −
[𝑘𝐀3,3

]−1
𝐸

[𝑘𝐀1∶2,3
]

𝐸

[𝑘𝐀3,1∶2
]

𝐸 , 𝟎
𝟎 , 0

]

(12)

and
[

𝑘𝑗𝐗̃
]

𝐸
=

⎡

⎢

⎢

⎢

⎣

[𝑘𝐀3,3
]−1
𝐸

[𝑘𝐀1∶2,3
]

𝐸
1
2
∑

𝑗

(

𝜕 𝑗𝑁
𝜕𝑥1

[

𝐄2
]𝑇
𝐸 −

∑

𝑗

𝜕 𝑗𝑁
𝜕𝑥2

[

𝐄1
]𝑇
𝐸

)

[𝑘𝐀
]

𝐸

𝟎

⎤

⎥

⎥

⎥

⎦

(13)

where we use the notation
[

𝐀3,1∶2
]

𝐸 to designate a sub-matrix consisting of the row 3 and the columns 1 and 2 of the matrix
[𝐀]𝐸 and so on. With these definitions, we can write a transformation matrix from the nodal basis into the element basis as

[

𝐓𝐴]

𝐸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[1𝐀
]

𝐸 𝟎 𝟎 𝟎 𝟎 𝟎
[

11𝐗̃
]

𝐸

[

1𝐀̃
]

𝐸

[

12𝐗̃
]

𝐸
𝟎

[

13𝐗̃
]

𝐸
𝟎

𝟎 𝟎
[2𝐀

]

𝐸 𝟎 𝟎 𝟎
[

21𝐗̃
]

𝐸
𝟎

[

22𝐗̃
]

𝐸

[

2𝐀̃
]

𝐸

[

23𝐗̃
]

𝐸
𝟎

𝟎 𝟎 𝟎 𝟎
[3𝐀

]

𝐸 𝟎
[

31𝐗̃
]

𝐸
𝟎

[

32𝐗̃
]

𝐸
𝟎

[

33𝐗̃
]

𝐸

[

3𝐀̃
]

𝐸

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦𝐸

. (14)

The transformation (11) accomplishes the following: the drilling rotations about the nodal normals are now totally decoupled
from the elastic response of the element (note that the third column of (12) consists only of zeros!). This is true for all elements
connected at a node. This is an important point, as the drilling rotations expressed about the normal to any particular element
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are only decoupled from the elastic response of that element, but in general would be coupled to any other non-coplanar adjacent
element.

So, to stress this point, rotations about the nodal normals are now totally independent individual degrees of freedom, not only
for the single finite element at hand, but globally. At the moment, these degrees of freedom are not associated with any stiffness
at all. However, we can remedy this situation by adding an arbitrary stiffness on the diagonal of [𝐊]𝐴: we add a torsional stiffness
𝑘𝑑 > 0 to the drilling degrees of freedom on the nodal basis

[

𝐊6,6
]

𝐴 = 𝑘𝑑 ,
[

𝐊12,12
]

𝐴 = 𝑘𝑑 ,
[

𝐊18,18
]

𝐴 = 𝑘𝑑 . (15)

The rank of the element stiffness matrix at this point increases to 11, which may be considered a full rank (the twisting mode is
not communicable). Next, the matrix (11) is transformed into the global cartesian coordinate system

[𝐊]𝐺 =
[

𝐓𝐺]𝑇
𝐴 [𝐊]𝐴

[

𝐓𝐺]

𝐴 (16)

where the transformation matrix
[

𝐓𝐺]

𝐴 takes as input a vector in the global cartesian coordinate system (𝐆), and outputs a vector
in the nodal coordinate basis (𝐀):

[

𝐓𝐺]

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[1𝐀
]𝑇
𝐸 [𝐄]𝑇𝐺 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎

[1𝐀
]𝑇
𝐸 [𝐄]𝑇𝐺 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎
[2𝐀

]𝑇
𝐸 [𝐄]𝑇𝐺 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎
[2𝐀

]𝑇
𝐸 [𝐄]𝑇𝐺 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎
[3𝐀

]𝑇
𝐸 [𝐄]𝑇𝐺 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎
[3𝐀

]𝑇
𝐸 [𝐄]𝑇𝐺

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦𝐺

. (17)

After we assemble the matrices (16), the global stiffness matrix no longer has zero-eigenvalue eigenvectors corresponding to
rotations about the nodal normals.

3.2 Mass matrix
The explicit time integration algorithm requires a diagonal global mass matrix for efficiency. The element mass matrix can be
easily constructed on the element basis 𝐄 as diagonal using a nodal integration rule (three integration points per triangle located
at the nodes). The diagonal elements corresponding to translations are

[

𝐌𝑖𝑖
]

𝐸 = ∫
𝐴

𝑘𝑁2𝑡𝜌d𝐴 , (18)

where the translation degree of freedom 𝑖 is located at node 𝑘, 𝑡 is the uniform thickness of the element, 𝐴 is the area of the
triangle, and 𝜌 is the mass density. The integral is evaluated as

[

𝐌𝑖𝑖
]

𝐸 ≈
𝐴𝑡𝜌
3

, (19)

i.e. as one third of the total mass of the element.
The diagonal elements corresponding to flexural rotations of the nodes can be evaluated using the moment of inertia density32,

again using nodal quadrature, as
[

𝐌𝑖𝑖
]

𝐸 = ∫
𝐴

𝑘𝑁2 𝑡3

12
𝜌d𝐴 ≈

𝐴𝑡3𝜌
36

. (20)

where the flexural-rotation degree of freedom 𝑖 (i.e. 𝑖 = 4, 5, 10, 11, 16, 17 on the element level) is located at node 𝑘.
Finally, we need to assign some inertial properties to the drilling-rotation degrees of freedom. Leaving these generalized

masses as zero is not an option, as that would lead to infinite frequencies in the vibration spectrum, which would destroy the
explicit time integration.

There is also the consideration of the need to transform the element matrix into the global cartesian coordinate system 𝐆.
For each node 𝑘, the submatrix of the mass matrix corresponding to translations is a multiple of the identity, where 𝐴𝑡𝜌∕3 is
the multiplier. This submatrix is expressed on the element basis 𝐄, but the transformation leaves it alone, i.e. the submatrix
transformed into the global basis 𝐆 is the same scaled identity. Therefore, if we wish to preserve the same property for the
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rotations, we simply make the drilling-rotation mass coefficient the same as the flexural-rotation mass coefficients, that is we
use (20) for 𝑖 = 6, 12, 18. Thus, the mass matrix of a single element adopted here is

[𝐌]𝐸,𝐺 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴𝑡𝜌
3

[𝟏] 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝐴𝑡3𝜌
36

[𝟏] 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝐴𝑡𝜌
3

[𝟏] 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝐴𝑡3𝜌
36

[𝟏] 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝐴𝑡𝜌
3

[𝟏] 𝟎
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. (21)

Herein we use the subscript 𝐸,𝐺 to indicate that the lumped mass matrix has exactly the same form in the element coordinates
as in the global cartesian coordinates.

Adopting the same mass coefficient for the drilling rotations as for the flexural rotations may seem strange, or at least physically
unmotivated. However, the drilling degrees of freedom are uncoupled from each other and from all the other degrees of freedom
in the system. Therefore, they will not contribute to the dynamics of the system. The mass coefficient for the drilling degree
of freedom can therefore be set to an arbitrary value, and we use that device here to make the construction of a diagonal mass
matrix easy.

3.3 Control of the stable time step
Recall that the transformation of the element stiffness matrices elastically decoupled all drilling degrees of freedom from the
other degrees of freedom in the dynamical system of the balance equations. Therefore, all drilling degrees of freedom represent
single-degree-of-freedom torsional oscillators, were the mass is assembled from the element mass matrices (21), and the tor-
sional stiffness are the coefficients 𝑘𝑑 assembled from the elements. Reference 23 suggested for the torsional stiffness coefficient
the quantity

𝑘𝑑 = 𝜁 × mean𝑖=4,5,10,11,16,17
([

𝐊𝑖𝑖
]

𝐸

)

, (22)
i.e. a multiple of the average flexural stiffness coefficient of the element. The multiplier 𝜁 = 1 was suggested based on the
following considerations:

1. The multiplier should not be a very small number or a very large number in order to protect the condition number of the
stiffness matrix.

2. The static response was shown to be entirely independent of the magnitude of the multiplier 𝜁 when the exact normals could
be constructed, and the value 𝜁 = 1 produced acceptable results for approximate nodal normals.

3. For free vibration analysis, the multiplier should not be so small as to make the torsional springs for the drilling degrees of
freedom so soft that the natural frequencies of the system will be interspersed with (polluted by) the meaningless torsional
drilling oscillations. Again, 𝜁 = 1 proved satisfactory.

For the explicit integration of transient dynamic response (wave propagation) we would add a fourth consideration:

4. For fast transient analysis with an explicit integration method, the multiplier should not be so large as to make the torsional
springs for the drilling degrees of freedom so stiff that the natural frequencies of the system will be dominated by the
frequencies of the torsional drilling oscillations. These unphysical frequencies would then dictate (control) the stable time
step, driving it unnecessarily down.

It turns out that 𝜁 = 1 is again a good choice. To see why that is so, consider that the elastic constant for the drilling rotations is
the average of the flexural stiffness coefficients. The mass coefficients for the drilling rotations are also averages of all the rotation
(moment of inertia) mass-matrix coefficients. Therefore, it makes sense to expect that the natural frequencies corresponding to
pure flexure will be similar to those for the drilling rotations.

Consider a sample wave propagation simulation, in a cylindrical shell of radius 𝑅 and thickness 𝑡. Figure 2 provides some data
to illustrate the consequences of choosing 𝜁 differently: The vertical axis is the normalized time step, where the time step used for
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the normalization is the longest possible one. The horizontal axis are the values of the multiplier 𝜁 . Making 𝜁 smaller decreases
the global natural frequencies corresponding to drilling rotations, and the time step is controlled by the highest meaningful
physical frequency. If we select 𝜁 > 1.5, the natural frequencies corresponding to drilling rotations will start to dominate the
spectrum of the generalized eigenvalue pencil, and the critical time step will be controlled by them. For 𝜁 = 10, the stable time
step will have dropped to 40% of the longest possible time step. The graph shows multiple curves to illustrate the dependence
of the stable time step on the thinness of the shell expressed with the aspect ratio 𝑡∕𝑅.
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FIGURE 2 The stable time step for the cylindrical shell as a function of the drilling stiffness multiplier 𝜁 , for various thickness
to radius ratios.

For the explicit dynamics of shells, the item 3. considered above actually is not critical. Because the drilling rotations are
mutually uncoupled, and also decoupled from all physical degrees of freedom, they will not get excited (if no loading is applied
directly to the drilling degrees of freedom, which should not be alowed in our opinion). Figure 3 demonstrates that the kinetic
energy is unaffected by choosing three different values of the drilling stiffness multiplier 𝜁 – the three curves overlap. The only
effect is a stable time step reduction for 𝜁 = 10.

4 NUMERICAL EXAMPLES

The computations with the present model were implemented in the Julia programming language33,34, in the frame-
work of the FinEtoolsFlexStructures.jl Julia package35. The results reported below can be reproduced with the
TestT3FFExplicit.jl Julia package (refer to the data section).

4.1 Spherical cap shell with suddenly applied pressure loading
This example is as close as we can come to an established benchmark for transient-vibration simulation. The first solution
was apparently published by Bathe et al.36, and the solution was obtained with quadratic axisymmetric shell elements. The
benchmark configuration is described in Figure 4. The material of the shell had Young’s modulus 𝐸 = 10.5× 106 psi, Poisson’s
ratio 𝜈 = 0.3, and mass density 𝜌 = 2.45×10−4 lb s2∕in4. The shell was 0.41 in thick. The loading was 600 psi uniform pressure
applied from the top in the form of a step function.

In addition to the results of Bathe et al.36, we also consider our own simulation with Abaqus37 quadrilateral small-strain
elements (S4R5), with an implicit time stepping (labeled A/impl), and the small-strain quadrilateral with warping improvements
(S4RSW), with explicit time stepping (label A/expl).
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FIGURE 3 Spherical cap. Kinetic energy obtained for three different values of the drilling stiffness multiplier 𝜁 . The three
curves coincide: the drilling degrees of freedom do not contribute to the kinetic energy.

The present mesh consisted of 397 nodes, and 726 triangular elements, which is approximately the same mesh as in the
Abaqus simulations, and the vibration event of 1 ms duration was advanced in 945 steps. The agreement with the three reference
solutions listed above is quite satisfactory.

We have omitted in this comparison for instance References 15 and 38, because their results are quite different from the four
curves presented in Figure 5 (none of the four curves are matched). The References 39,40 were also disregarded because the
data in these articles were found to be in error (the angle was listed as 22.67𝑜, probably by mistake).

4.2 Elastic Waves in a Thin Aluminum Plate
The monograph by Ostachowicz et al.9 presents a useful collection of examples of wave propagation in plates and shells. In
this section we shall consider wave propagation in a plate. For this example the book provides both a computational result and
experimental data allowing for both verification and validation.

The structure was a square aluminum plate, one quarter of which was modeled using two symmetry planes (refer to Figure 6).
The side length of the plate was 𝐿 = 1000mm, while its thickness ℎ was 1mm. The excitation was a concentrated force at the
center in the form of a Hann-windowed sinusoidal signal, where the carrier frequency was 35kHz and its modulation frequency
was 7kHz. The material of the plate was aluminum alloy with Young’s modulus 𝐸 = 68.0 GPa, Poisson’s ratio 𝜈 = 0.33, and
mass density 𝜌 = 2660 kg∕m3.

Experimental measurements obtained with laser scanning vibrometry were reported. The laser scanning measurements were
based on a grid of 225 × 227 points covering one-quarter of the plate, taken at 1024 time snapshots within the first 1 ms
of response. The wave propagation patterns represented the 𝐴0 mode (transverse flexural vibration). The time interval was
sufficiently long to introduce reflections of the propagating waves from the plate boundaries.

The computational model consisted of a regular arrangement of triangular shell elements, with equal number of nodes along
both directions. The meshes used in this investigation are listed in Table1. Mass-proportional damping was applied with the
fraction of critical damping set to 𝜉 = 7.95775 × 10−3, and with 𝜔𝑑 = 2000𝜋. Even though the problem represents a plate, all
six degrees of freedom per node have been employed in order to test thoroughly the present formulation for flat geometries.

Figure7 shows three snapshots of the computed displacements. These can be compared directly with the numerical simulations
and the experimentally acquired laser scanning vibrometry images in Figure 5.20 of the Reference 9. The agreement is very
good.
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FIGURE 4 Spherical cap, mesh with 22 element edges along the radius.

TABLE 1 Free-floating plate with center loading. Meshes employed in Figure 9.

Mesh (a) (b) (c)

Number of nodes [ND] 25921 103041 410881
Number of elements [ND] 51200 204800 819200
Element size [mm] 3.12500 1.56250 0.78125
Number of time steps [ND] 3345 5902 10846
Run time [s] 12.6 93 752

Figure 8 shows the computed velocity perpendicular to the plane of the plate (transverse) at point 𝐶 . The first wave packet
from the left is the arrival of the loading pulse, the second wave packet is the arrival of the reflection from the right hand side
boundary. The timings of arrival and the relative magnitudes of the wave packets are in good agreement with the experimental
data9. Their results have been obtained with the mesh (b) of Table 1. The simulation was run on a Surface Pro tablet, and
executed in less than two minutes using 4 concurrent threads.

Figure 9 addresses convergence of the computed response at point 𝐶 with refinement. The velocity was computed for three
meshes (refer to Table 1). There is an appreciable difference between the coarsest mesh (a) and the two finer meshes, but very
little difference between meshes (b) and (c).

The numerical results reported in Reference 9 have been obtained with spectral plate finite elements of fifth order. The number
of elements was 10240, so almost 20 times smaller then in our mesh (b), but the number of time steps required in Reference 9
was 50,000, so roughly 8 times more than for our mesh (b). Also, the number of nodes in the fifth-order spectral method is on the
order of 25× the number of elements, whereas the number of nodes in the present method is only around one half of the number
of elements. The relative accuracy of the computed response cannot be ascertained, but qualitatively the results obtained in the
present work compare favorably with Figure 5.21 of Reference 9.
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FIGURE 5 Spherical cap, mesh with eight element edges along the radius.

FIGURE 6 Free-floating plate with center loading (point 𝐴). Symmetry conditions applied along two sides of the quarter plate,
the other two sides are free. Transverse velocity at point 𝐶 is measured.

4.3 Elastic Waves in a Folded Shell
The monograph by Ostachowicz et al.9 describes wave propagation in an aluminum bar of an L-shape cross section, refer to
Figure 10. The length of the bar was 𝐿 = 1000mm, the flanges were 𝑊 = 250mm wide, and the thickness of the material ℎ
was 10mm. The excitation was a concentrated force of 1.0 N at the midpoint of one of the flanges (𝑥 = 𝐿∕2, 𝑦 = 𝑊 , 𝑧 = 0) in
the form of a Hann-windowed sinusoidal signal, where the carrier frequency was 75kHz and its modulation frequency was one
quarter of the carrier frequency. The material of the plate was aluminum with Young’s modulus 𝐸 = 72.7 GPa, Poisson’s ratio
𝜈 = 0.33, and mass density 𝜌 = 2700 kg∕m3.

Figure 11 shows the snapshots of the propagating waves. The displacements have been highly magnified, and the snapshots
have been taken at 62.5 𝜇s intervals. The conversion of the initially generated flexural wave at the crease where the flanges meet
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FIGURE 7 Free-floating plate with center loading. Snapshots of the transverse displacement: left to right 0.25ms, 0.5ms, 0.75ms.
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FIGURE 8 Free-floating plate with center loading. Transverse velocity at point 𝐶 .

into in-plane and shear waves is notable. The displacement magnitude was color coded using the “X-ray” color map, and the
snapshots agree well with Figure 5.16 of the Reference 9.

4.4 Half-pipe Shell with an Open Crack
The monograph by Ostachowicz et al.9 describes wave propagation in a half-pipe aluminum shell, with details provided in
Figure 12. The length of the shell was 𝐿 = 1000mm, the circumferential dimension was 𝑊 = 500mm, corresponding to a
radius of 𝑅 = 159.155mm, and the thickness of the material ℎ was 10mm. The excitation was a concentrated force of 1.0 N at
the corner of the shell (𝑥 = 𝐿∕2, 𝑦 = 𝑊 , 𝑧 = 0) in the form of a Hann-windowed sinusoidal signal, where the carrier frequency
was 75kHz and its modulation frequency was one quarter of the carrier frequency. The material of the plate was aluminum with
Young’s modulus 𝐸 = 72.7 GPa, Poisson’s ratio 𝜈 = 0.33, and mass density 𝜌 = 2700 kg∕m3. An open crack was located at
mid-length, of angular dimension 6𝑜 and positioned 40𝑜 from the horizontal (𝑋𝑌 ) plane. A regular mesh which incorporated
the crack was generated, consisting of 246864 nodes, 491520 elements. The time interval of 0.5 ms = 500 μs was traversed with
3713 steps.
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FIGURE 9 Free-floating plate with center loading. Comparison of the velocity at point 𝐶 for three progressively finer meshes.
Refer to Table 1.

FIGURE 10 Angle bar geometry.

The propagating Lamb guided waves are illustrated in Figure 13. The displacements are highly magnified, and the peak
magnitude of the displacement is color coded as dark gray color. Of particular interest are frames at 187.5 μs, which shows
the arriving wavefront beginning to interact with the crack, at 250.0 μs, which shows the wave reflected back from the crack
(towards the left and downwards in the figure), and the frame at 312.5 μs, which shows the interaction of the wave scattered
from the crack with the flexural wave reflected from the far straight edge of the shell.

CONCLUSIONS

We studied explicit integration of the equations of motion of thin-walled (shell-like) structures discretized with the finite element
method. A flat-facet triangular finite element for shear-deformable shell structures developed in Reference 23 was applied to fast
transient wave-propagation events. The element internally uses five physical degrees of freedom per node (three translations and
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FIGURE 11 Angle bar. Snapshots of the propagating waves at 62.5 𝜇s intervals, starting at the top from 62.5 𝜇s, and finishing
at the bottom at 250.0 𝜇s.

two flexural rotations), but six cartesian degrees of freedom per node globally. A transformation between the element cartesian
frame and the global cartesian coordinate system via an intermediate basis at the nodes wholy decouples the global drilling
rotations from the elementwise flexural deformations. The global drilling rotations are independent of each other, and decoupled
from the other degrees of freedom in the system. Hence, an arbitrary stiffness and mass coefficients could be applied to the
drilling rotations. The goal is to prevent the singularity of the global stiffness matrix and to avoid infinite natural frequencies.

These considerations potentially affect the accuracy and stability of the time integration method. The contribution of the
present work was to unravel the interdependency of the mass and stiffness parameters associated with the drilling degrees of
freedom. The developed approach fixed the mass moment of inertia assembled to the global drilling degrees of freedom using
the corresponding coefficients applied to the flexural degrees of freedom. The stiffness coefficient assembled from the elements
in the form of a multiple of the mean stiffness coefficient from the diagonal of the elementwise stiffness matrix was then shown
to contribute to the good conditioning of the stiffness matrix, as well as to keeping the artificial frequencies associated with the
drilling degrees of freedom from reducing the stable time step of the explicit integration algorithm.

Numerical examples were used to illustrate the performance. Benchmark solutions were explored, as well as examples of
tracking of guided Lamb waves, including reflections from flaws in shells.

Although only linear wave propagation problems were addressed, and the material of the shell was assumed homogeneous
and isotropic, extensions in multiple directions are possible: The material need not be isotropic, and layered shells may be
incorporated with classical theory of lamination. Inelastic response and geometrical nonlinearity are possible areas of future
research.
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FIGURE 12 Half-pipe shell with an open crack.
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