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Summary

POMDPStressTesting.jl is a package that uses reinforcement learning and stochastic op-
timization to find likely failures in black-box systems through a technique called adaptive
stress testing (Lee, Mengshoel, & Kochenderfer, 2019). Adaptive stress testing (AST)
has been used to find failures in safety-critical systems such as aircraft collision avoid-
ance systems (Lee, Kochenderfer, Mengshoel, Brat, & Owen, 2015), flight management
systems (Moss et al., 2020), and autonomous vehicles (Koren, Alsaif, Lee, & Kochender-
fer, 2018). The POMDPStressTesting.jl package is written in Julia (Bezanson, Edelman,
Karpinski, & Shah, 2017) and is part of the wider POMDPs.jl ecosystem (Egorov et
al., 2017), which provides access to simulation tools, policies, visualizations, and—most
importantly—solvers. We provide different solver variants including online planning algo-
rithms such as Monte Carlo tree search (Coulom, 2006) and deep reinforcement learning
algorithms such as trust region policy optimization (TRPO) (Schulman, Levine, Abbeel,
Jordan, & Moritz, 2015) and proximal policy optimization (PPO) (Schulman, Wolski,
Dhariwal, Radford, & Klimov, 2017). Stochastic optimization solvers such as the cross-
entropy method (Rubinstein, 1999) are also available and random search is provided as a
baseline. Additional solvers can easily be added by adhering to the POMDPs.jl interface.

The AST formulation treats the falsification problem (i.e. finding failures) as a Markov
decision process (MDP) with a reward function that uses a measure of distance to a
failure event to guide the search towards failure. The reward function also uses the
state transition probabilities to guide towards likely failures. Reinforcement learning
aims to maximize the discounted sum of expected rewards, therefore maximizing the sum
of log-likelihoods is equivalent to maximizing the likelihood of a trajectory. A gray-box
simulation environment steps the simulation and outputs the state transition probabilities,
and the black-box system under test is evaluated in the simulator and outputs an event
indication and the real-valued distance metric (i.e. how close we are to failure). To apply
AST to a general black-box system, a user has to implement the following Julia interface:

# GrayBox simulator and environment
abstract type GrayBox.Simulation end
function GrayBox.environment(sim::Simulation)::GrayBox.Environment end
function GrayBox.transition!(sim::Simulation)::Real end

# BlackBox.interface(input::InputType)::OutputType
function BlackBox.initialize!(sim::Simulation)::Nothing end
function BlackBox.evaluate!(sim::Simulation)::Tuple{Real, Real, Bool} end
function BlackBox.distance(sim::Simulation)::Real end
function BlackBox.isevent(sim::Simulation)::Bool end
function BlackBox.isterminal(sim::Simulation)::Bool end
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Our package builds off work originally done in the AdaptiveStressTesting.jl package (Lee
et al., 2019), but POMDPStressTesting.jl adheres to the interface defined by POMDPs.jl
and provides different action modes and solver types. Related falsification tools (i.e. tools
that do not include most-likely failure analysis) are S-TaLiRo (Annapureddy, Liu,
Fainekos, & Sankaranarayanan, 2011), Breach (Donzé, 2010), and FalStar (Zhang,
Ernst, Sedwards, Arcaini, & Hasuo, 2018). These packages use a combination of opti-
mization, path planning, and reinforcement learning techniques to solve the falsification
problem. The tool most closely related to POMDPStressTesting.jl is the AST Toolbox
in Python (Koren et al., 2018), which wraps around the gym reinforcement learning
environment (Brockman et al., 2016). The author has contributed to the AST Toolbox
and found the need to create a similar package in pure Julia for better performance and
to interface with the POMDPs.jl ecosystem.

Statement of Need

Validating autonomous systems is a crucial requirement before their deployment into real-
world environments. Searching for likely failures using automated tools enable engineers
to address potential problems during development. Because many autonomous systems
are in environments with rare failure events, it is especially important to incorporate
likelihood of failure within the search to help inform the potential problem mitigation.
This tool provides a simple interface for general black-box systems to fit into the adaptive
stress testing problem formulation and gain access to solvers. Due to varying simulation
environment complexities, random seeds can be used as the AST action when the user
does not have direct access to the environmental probability distributions or when the
environment is complex. Alternatively, directly sampling from the distributions allows
for finer control over the search. The interface is designed to easily extend to other
autonomous system applications and explicitly separating the simulation environment
from the system under test allows for wider validation of complex black-box systems.

Research and Industrial Usage

POMDPStressTesting.jl has been used to find likely failures in aircraft trajectory predic-
tion systems (Moss et al., 2020), which are flight-critical subsystems used to aid in-flight
automation. A developmental commercial flight management system was stress tested so
the system engineers could mitigate potential issues before system deployment (Moss et
al., 2020). In addition to traditional requirements-based testing for avionics certification
(RTCA, 2011), this work is being used to find potential problems during development.
There is also ongoing research on the use of POMDPStressTesting.jl for assessing the risk
of autonomous vehicles and determining failure scenarios of autonomous lunar rovers.
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