
POMDPStressTesting.jl Example: Walk1D

Robert J. Moss mossr@cs.stanford.edu

Computer Science, Stanford University

Abstract

In this self-contained tutorial, we define a simple problem for adaptive stress testing (AST)
to find failures. This problem, called Walk1D, samples random walking distances from a
standard normal distributionN (0, 1) and defines failures as walking past a certain threshold
(which is set to ±10 in this example). AST will either select the seed which determinis-
tically controls the sampled value from the distribution (i.e. from the transition model)
or will directly sample the provided environmental distributions. These action modes are
determined by the seed-action or sample-action options. AST will guide the simulation to
failure events using a notion of distance to failure, while simultaneously trying to find the
set of actions that maximizes the log-likelihood of the samples.

1. Gray-box Simulator and Environment

The simulator and environment are treated as gray-box because we need access to the
state-transition distributions and their associated likelihoods.

Parameters. First, we define the parameters of our simulation.

1 @with_kw mutable struct Walk1DParams
2 startx::Float64 = 0 # Starting x-position
3 threshx::Float64 = 10 # +- boundary threshold
4 endtime::Int64 = 30 # Simulate end time
5 end

Simulation. Next, we define a GrayBox.Simulation structure.

1 @with_kw mutable struct Walk1DSim <: GrayBox.Simulation
2 params::Walk1DParams = Walk1DParams() # Parameters
3 x::Float64 = 0 # Current x-position
4 t::Int64 = 0 # Current time ±
5 distribution::Distribution = Normal(0, 1) # Transition distribution
6 end

1.1 GrayBox.environment

Then, we define our GrayBox.Environment distributions. When using the ASTSampleAction,
as opposed to ASTSeedAction, we need to provide access to the sampleable environment.

1 GrayBox.environment(sim::Walk1DSim) = GrayBox.Environment(:x => sim.distribution)

Robert J. Moss

1.2 GrayBox.transition!

We override the transition function from the GrayBox interface, which takes an environ-
ment sample as input. We apply the sample in our simulator, and return the log-likelihood.

1 function GrayBox.transition!(sim::Walk1DSim, sample::GrayBox.EnvironmentSample)
2 sim.t += 1 # Keep track of time
3 sim.x += sample[:x].value # Move agent using sampled value from input
4 return logpdf(sample)::Real # Summation handled by ‘logpdf()‘
5 end

2. Black-box System

The system under test, in this case a simple single-dimensional moving agent, is always
treated as black-box. The following interface functions are overridden to minimally interact
with the system, and use outputs from the system to determine failure event indications
and distance metrics.

2.1 BlackBox.initialize!

Now we override the BlackBox interface, starting with the function that initializes the sim-
ulation object. Interface functions ending in ! may modify the sim object in place.

1 function BlackBox.initialize!(sim::Walk1DSim)
2 sim.t = 0
3 sim.x = sim.params.startx
4 end

2.2 BlackBox.distance

We define how close we are to a failure event using a non-negative distance metric.

1 BlackBox.distance(sim::Walk1DSim) = max(sim.params.threshx - abs(sim.x), 0)

2.3 BlackBox.isevent

We define an indication that a failure event occurred.

1 BlackBox.isevent(sim::Walk1DSim) = abs(sim.x) >= sim.params.threshx

2.4 BlackBox.isterminal

Similarly, we define an indication that the simulation is in a terminal state.

1 BlackBox.isterminal(sim::Walk1DSim) =
2 BlackBox.isevent(sim) || sim.t >= sim.params.endtime

2

POMDPStressTesting.jl Example: Walk1D

2.5 BlackBox.evaluate!

Lastly, we use our defined interface to evaluate the system under test. Using the input
sample, we return the log-likelihood, distance to an event, and event indication.

1 function BlackBox.evaluate!(sim::Walk1DSim, sample::GrayBox.EnvironmentSample)
2 logprob::Real = GrayBox.transition!(sim, sample) # Step simulation
3 d::Real = BlackBox.distance(sim) # Calculate miss distance
4 event::Bool = BlackBox.isevent(sim) # Check event indication
5 return (logprob::Real, d::Real, event::Bool)
6 end

3. AST Setup and Running

Setting up our simulation, we instantiate our simulation object and pass that to the
Markov decision proccess (MDP) object of the adaptive stress testing formulation. We
use Monte Carlo tree search (MCTS) with progressive widening on the action space as our
solver. Hyperparameters are passed to MCTSPWSolver, which is a simple wrapper around
the POMDPs.jl implementation of MCTS. Lastly, we solve the MDP to produce a planner.
Note we are using the ASTSampleAction.

1 function setup_ast(seed=0)
2 # Create gray-box simulation object
3 sim::GrayBox.Simulation = Walk1DSim()
4

5 # AST MDP formulation object
6 mdp::ASTMDP = ASTMDP{ASTSampleAction}(sim)
7 mdp.params.debug = true # record metrics
8 mdp.params.top_k = 10 # record top k best trajectories
9 mdp.params.seed = seed # set RNG seed for determinism
10

11 # Hyperparameters for MCTS-PW as the solver
12 solver = MCTSPWSolver(n_iterations=1000, # number of algorithm iterations
13 exploration_constant=1.0, # UCT exploration
14 k_action=1.0, # action widening
15 alpha_action=0.5, # action widening
16 depth=sim.params.endtime) # tree depth
17

18 # Get online planner (no work done, yet)
19 planner = solve(solver, mdp)
20

21 return planner
22 end

After setup, we search for failures using the planner and output the best action trace.

1 planner = setup_ast()
2 action_trace = search!(planner)

3

Robert J. Moss

We can also playback specific trajectories and print intermediate x-values.

1 final_state = playback(planner, action_trace, sim->sim.x)

Finally, we can print metrics associated with the AST run for further analysis.

1 failure_rate = print_metrics(planner)

4. Solvers

The solvers provided by the POMDPStressTesting.jl package include the following.

1 # Reinforcement learning
2 MCTSPWSolver
3 # Deep reinforcement learning
4 TRPOSolver
5 PPOSolver
6 # Stochastic optimization
7 CEMSolver
8 # Baselines
9 RandomSearchSolver

5. Reward Function

The AST reward function gives a reward of 0 if an event is found, a reward of negative
distance if no event is found at termination, and the log-likelihood during the simulation.

R (p, e, d, τ) =


0 if τ ∧ e
−d if τ ∧ ¬e
log (p) otherwise

1 function R(p,e,d,τ)
2 if τ && e
3 return 0
4 elseif τ && !e
5 return -d
6 else
7 return log(p)
8 end
9 end

.File generated using TeX.jl: https://github.com/mossr/TeX.jl

.

4

using Revise # DEBUG

using TeX

using POMDPStressTesting

using Distributions

using Parameters

doc = globaldoc("walk1d"; build_dir="output_walk1d", jmlr=true)

doc.title = "POMDPStressTesting.jl Example: Walk1D"

doc.author = "Robert J. Moss"

doc.address = "Computer Science, Stanford University"

doc.email = "mossr@cs.stanford.edu"

doc.title_case_sections = false

doc.use_subsections = true

@tex T"""\begin{abstract}

In this self-contained tutorial, we define a simple problem for adaptive stress testing (AST)

to find failures. This problem, called Walk1D, samples random walking distances from a standard

normal distribution $\mathcal{N}(0,1)$ and defines failures as walking past a certain threshold

(which is set to ± 10 in this example). AST will either select the seed which deterministically

controls the sampled value from the distribution (i.e. from the transition model) or will directly

sample the provided environmental distributions. These action modes are determined by the seed-action or

sample-action options. AST will guide the simulation to failure events using a notion of distance to failure,

while simultaneously trying to find the set of actions that maximizes the log-likelihood of the samples.

\end{abstract}"""

addpackage!(doc, "url")

addkeywords!(["BlackBox", "GrayBox", "Simulation", "Environment", "EnvironmentSample", "ASTSampleAction", "ASTSeedAction", "Walk1DSim", "Walk1DParams", "ASTMDP", "MCTSPWSolver", "CEMSolver", "TRPOSolver", "PPOSolver", "RandomSearchSolver", "Distribution", "Normal", "logpdf"]; num=2)

addkeywords!(["initialize!", "transition!", "evaluate!", "distance", "isevent", "isterminal", "setup_ast", "search!", "playback", "print_metrics", "environment", "solve"]; num=3)

@tex T"""\section{Gray-box Simulator and Environment}

The simulator and environment are treated as gray-box because we need

access to the state-transition distributions and their associated likelihoods.

"""

@tex T"""\paragraph{Parameters.}

First, we define the parameters of our simulation.""" ->

@with_kw mutable struct Walk1DParams

 startx::Float64 = 0 # Starting x-position

 threshx::Float64 = 10 # +- boundary threshold

 endtime::Int64 = 30 # Simulate end time

end

@tex "\\paragraph{Simulation.} Next, we define a \\texttt{GrayBox.Simulation} structure." ->

@with_kw mutable struct Walk1DSim <: GrayBox.Simulation

 params::Walk1DParams = Walk1DParams() # Parameters

 x::Float64 = 0 # Current x-position

 t::Int64 = 0 # Current time ±

 distribution::Distribution = Normal(0, 1) # Transition distribution

end

@tex "Then, we define our \\texttt{GrayBox.Environment} distributions.

When using the \\texttt{ASTSampleAction}, as opposed to \\texttt{ASTSeedAction},

we need to provide access to the sampleable environment." ->

GrayBox.environment(sim::Walk1DSim) = GrayBox.Environment(:x => sim.distribution)

@tex T"""We override the transition function from the \texttt{GrayBox} interface,

which takes an environment sample as input. We apply the sample in our simulator,

and return the log-likelihood.""" ->

function GrayBox.transition!(sim::Walk1DSim, sample::GrayBox.EnvironmentSample)

 sim.t += 1 # Keep track of time

 sim.x += sample[:x].value # Move agent using sampled value from input

 return logpdf(sample)::Real # Summation handled by `logpdf()`

end

@tex T"""\section{Black-box System}

The system under test, in this case a simple single-dimensional moving agent,

is always treated as black-box. The following interface functions are overridden

to minimally interact with the system, and use outputs from the system to

determine failure event indications and distance metrics.

"""

@tex T"""Now we override the \texttt{BlackBox} interface, starting with the

function that initializes the simulation object. Interface functions

ending in \texttt{!} may modify the \texttt{sim} object in place.""" ->

function BlackBox.initialize!(sim::Walk1DSim)

 sim.t = 0

 sim.x = sim.params.startx

end

@tex T"""We define how close we are to a failure event using a non-negative distance metric.""" ->

BlackBox.distance(sim::Walk1DSim) = max(sim.params.threshx - abs(sim.x), 0)

@tex T"""We define an indication that a failure event occurred.""" ->

BlackBox.isevent(sim::Walk1DSim) = abs(sim.x) >= sim.params.threshx

@tex T"""Similarly, we define an indication that the simulation is in a terminal state.""" ->

BlackBox.isterminal(sim::Walk1DSim) =

 BlackBox.isevent(sim) || sim.t >= sim.params.endtime

@tex T"""Lastly, we use our defined interface to evaluate the system under test.

Using the input sample, we return the log-likelihood, distance to an event, and event indication.""" ->

function BlackBox.evaluate!(sim::Walk1DSim, sample::GrayBox.EnvironmentSample)

 logprob::Real = GrayBox.transition!(sim, sample) # Step simulation

 d::Real = BlackBox.distance(sim) # Calculate miss distance

 event::Bool = BlackBox.isevent(sim) # Check event indication

 return (logprob::Real, d::Real, event::Bool)

end

@tex T"""\section{AST Setup and Running}

Setting up our simulation, we instantiate our simulation object and

pass that to the Markov decision proccess (MDP) object of the adaptive stress testing

formulation. We use Monte Carlo tree search (MCTS) with progressive widening on the action

space as our solver. Hyperparameters are passed to \texttt{MCTSPWSolver}, which is

a simple wrapper around the POMDPs.jl implementation of MCTS. Lastly, we solve the MDP

to produce a planner. Note we are using the \texttt{ASTSampleAction}.""" ->

function setup_ast(seed=0)

 # Create gray-box simulation object

 sim::GrayBox.Simulation = Walk1DSim()

 # AST MDP formulation object

 mdp::ASTMDP = ASTMDP{ASTSampleAction}(sim)

 mdp.params.debug = true # record metrics

 mdp.params.top_k = 10 # record top k best trajectories

 mdp.params.seed = seed # set RNG seed for determinism

 # Hyperparameters for MCTS-PW as the solver

 solver = MCTSPWSolver(n_iterations=1000, # number of algorithm iterations

 exploration_constant=1.0, # UCT exploration

 k_action=1.0, # action widening

 alpha_action=0.5, # action widening

 depth=sim.params.endtime) # tree depth

 # Get online planner (no work done, yet)

 planner = solve(solver, mdp)

 return planner

end

@tex T"""After setup, we \textit{search} for failures using the planner and output the best action trace.""" ->

begin

 planner = setup_ast()

 action_trace = search!(planner)

end

@tex T"""We can also \textit{playback} specific trajectories and print intermediate x-values.""" ->

final_state = playback(planner, action_trace, sim->sim.x)

@tex T"""Finally, we can print metrics associated with the AST run for further analysis.""" ->

failure_rate = print_metrics(planner)

@tex T"""\section{Solvers}

The solvers provided by the POMDPStressTesting.jl package include the following.

""" ->

begin

 # Reinforcement learning

 MCTSPWSolver

 # Deep reinforcement learning

 TRPOSolver

 PPOSolver

 # Stochastic optimization

 CEMSolver

 # Baselines

 RandomSearchSolver

end

@tex T"""\section{Reward Function}

The AST reward function gives a reward of 0 if an event is found,

a reward of negative distance if no event is found at termination,

and the log-likelihood during the simulation.

\blfootnote{File generated using TeX.jl: \url{https://github.com/mossr/TeX.jl}}

"""

@texeq function R(p,e,d,τ)

 if τ && e

 return 0

 elseif τ && !e

 return -d

 else

 return log(p)

 end

end

@attachfile!

texgenerate() # Generate PDF

https://github.com/mossr/TeX.jl

	Gray-box Simulator and Environment
	GrayBox.environment
	GrayBox.transition!

	Black-box System
	BlackBox.initialize!
	BlackBox.distance
	BlackBox.isevent
	BlackBox.isterminal
	BlackBox.evaluate!

	AST Setup and Running
	Solvers
	Reward Function

