
13. Selection: How do populations stop growing? 
Modelling replication 
We have seen that populations grow through replication represented by the model: 

𝑥̇ = 𝑟 𝑥 

where 𝑥 is the size of a population and 𝑟 is the specific growth rate of that population. This 
model generates the exponential growth story, for which we can formulate an exact model: 

𝑥(𝑡) = 𝑥଴ 𝑒௥௧, with doubling time 𝑇ଶ = ln(2) 𝑟⁄ . 

? A bacteria population has 𝑟 = 0.035 minିଵ. Calculate the population’s doubling time. 
? How many minutes are in a day? How many cells does 1 bacterium generate in 3 days? 

This number is enormous. In fact, it is so enormous that it cannot be true! There is no such 
thing as exponential growth in real life. Rather, limited resources cause the population growth 
rate to drop as the population gets bigger. This is modelled by the logistic model: 

𝑥̇ = 𝑟𝑥 (1 − 𝑥 𝐾⁄ ) 

Here, 𝑟 is the specific replication rate of the population only when 𝑥 is much smaller than the 
resource limitation (carrying capacity) 𝐾. If 𝑥 → 0, or if 𝑥 → 𝐾, 𝑥̇ → 0, so the population has 
an unstable fixed point at 𝑥∗ = 0, but grows from any initial value 𝑥଴ > 0 towards the stable 
fixed point at 𝑥∗ = 𝐾. (A superscript asterisk denotes a fixed-point value.) 

Modelling selection 
Suppose we have two exponential populations 𝑥 and 𝑦 that reproduce at different rates 𝑟 
and 𝑠. Suppose they have initial conditions 𝑥(0) = 𝑥଴, 𝑦(0) = 𝑦଴, then: 

𝑥̇ = 𝑟 𝑥
𝑦̇ = 𝑠 𝑦

ൠ ⟹ ൜
𝑥(𝑡) = 𝑥଴ 𝑒௥ ௧

𝑦(𝑡) = 𝑦଴ 𝑒௦ ௧ 

Both 𝑥 and 𝑦 grow exponentially. 𝑥 has doubling time ln 2 𝑟⁄  and 𝑦 has doubling time ln 2 𝑠⁄ , 
so if 𝑟 > 𝑠, 𝑥 will grow faster than 𝑦. Eventually, there will be more 𝑥’s than 𝑦’s. 

? Define 𝜌(𝑡) ≡
௫(௧)

௬(௧)
 . Use the quotient rule to prove that 𝜌̇ = (𝑟 − 𝑠)𝜌. 

The solution of this equation is 𝜌(𝑡) = 𝜌଴ 𝑒(௥ି௦) ௧, so if 𝑟 > 𝑠, 𝜌 will grow toward infinity, and 
𝑥 outcompetes 𝑦. If in addition we assume resource are limited, the total population 𝑥 + 𝑦 
will remain constant, so if 𝑥 gets infinitely bigger than 𝑦, this must mean that 𝑦 → 0. 

This is selection: where the growth of 𝑥 drives 𝑦 to extinction. For selection to happen, we 
need different rates of growth of the populations 𝑥 and 𝑦, plus resource limitation. 

To study selection situations, we often use two simple modelling tricks: 

 We think of 𝑥 and 𝑦 not as populations, but as frequencies. That is, we assume the 
sum of both population types is 1 (𝑥 + 𝑦 = 1), so that 𝑥 describes what proportion of 
the combined population are 𝑥-individuals, and 𝑦 describes what proportion are 𝑦. 

 In addition, we think of the growth rates 𝑟 and 𝑠 as fitness values: 𝑟 describes how fit 
the type 𝑥 is, in terms of how effectively it grows by comparison with 𝑦. 

? We want to make sure that the sum 𝑥 + 𝑦 = 1 of the two frequencies stays constant. 
To do this, we reduce the growth rates of 𝑥 and 𝑦 by equal amounts 𝑅 in the selection 



equations: 𝑥̇ = (𝑟 − 𝑅)𝑥 and 𝑦̇ = (𝑠 − 𝑅)𝑦. Prove that this is only possible if 𝑅 is the 
average fitness of the two population types: 𝑅 = 𝑟𝑥 + 𝑠𝑦. 

? One advantage of this selection model is that 𝑦 depends upon 𝑥: 𝑦 = 1 − 𝑥. Show 
how we can eliminate 𝑦 from the two selection equations, so that we only need to 
solve the single equation: 𝑥̇ = (𝑟 − 𝑠)𝑥(1 − 𝑥). 

We know this equation: it is the logistic equation with specific growth rate (𝑟 − 𝑠) and 
carrying capacity 1. We also know how the logistic story evolves over time – it has two 
equilibria at 0 and 1: 

 If 𝑟 > 𝑠, 𝑥 → 1, so 𝑦 → 0, and type 𝑥 is selected over type 𝑦; 
 If 𝑠 > 𝑟, 𝑥 → 0, so 𝑦 → 1, and type 𝑦 is selected over type 𝑥; 

Martin Nowak calls this situation “Survival of the Fitter”. 

Survival of the fittest 
We can extend this 2-type model to selection between 𝑛 different types in a population. If we 
name the individual type frequencies 𝑥௜(𝑡) (where 𝑖 = 1, … , 𝑛), the structure describing all 𝑛 
types is a vector: 𝒙 ≡ (𝑥ଵ, 𝑥ଶ, … , 𝑥௡). Now define 𝑟௜ ≥ 0 as the fitness of type 𝑖, then the 
average fitness of the entire population of 𝑛 types is: 

𝑅 = ෍ 𝑥௜𝑟௜

௡

௜ୀଵ
= 𝒙 ∙ 𝒓 

We can then write the selection dynamics model as: 

𝑥̇௜ = 𝑥௜(𝑟௜ − 𝑅)  (Linear selection model) 

The frequency 𝑥௜  of type 𝑖 increases if its fitness 𝑟௜ is higher than the population average 𝑅; 
otherwise 𝑥௜  decreases. However, the total population stays constant: ∑ 𝑥௜

௡
௜ୀଵ = 1 and 

∑ 𝑥̇௜
௡
௜ୀଵ = 0. This is useful if we want to study the rise and fall of types within a population. 

The set of all values 𝑥௜ > 0 obeying the property that ∑ 𝑥௜
௡
௜ୀଵ = 1 is called a simplex (denoted 

𝑆௡). The useful thing about simplexes is that we can represent them graphically: 

𝑛 Simplex 𝑆௡ Geometrical visualisation 

1 Point  
2 Line segment 

 
3 Triangle 

 
4 Tetrahedron 

 

If 𝒗௜  (𝑖 = 1,2,3,4) are four vertex position 
vectors, the general point of 𝑆ସ is the convex 
combination: 𝒙 ≡ 𝑥ଵ𝒗ଵ + 𝑥ଶ𝒗ଶ + 𝑥ଷ𝒗ଷ + 𝑥ସ𝒗ସ 

For example, consider the 3-simplex (or triangle) 𝑆ଷ. Here, we interpret the top point (0,0,1) 
as representing the situation in which only population type 3 is present, and the other two 
are not. On the other hand, we interpret the centre point ൫భ
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? Which point would represent the situation in which type 2 is absent, and types 1 and 
3 are present in equal quantities? 

? In the linear selection model above, imagine that type 𝑘 ∈ {1,2, … , 𝑛} has greater 
fitness than any other type: 𝑟௞ > 𝑟௜, ∀𝑖 ≠ 𝑘. What does this mean for the value of the 
factor (𝑟௜ − 𝑅)? What does this mean for the growth rate 𝑥̇௞ of type 𝑘 whenever other 
types are present? What will be the frequency of the types after a long time? What 
will happen to any interior point of the simplex 𝑆௡ over time? 

You have demonstrated that the exponential selection model only ever has one outcome: 
total competitive exclusion. This is the meaning of the phrase “Survival of the Fittest”. 

Exercise project (1 week) 
In this project, we will use modelling to test a more general theory of selection: 

𝑥̇௜ = 𝑟௜𝑥௜
௖ − 𝑅𝑥௜; 𝑅 = ∑ 𝑟௜𝑥௜

௖௡
௜ୀଵ ; 𝑐 < 1 (Sublinear selection model) 

𝑥̇௜ = 𝑟௜𝑥௜
௖ − 𝑅𝑥௜; 𝑅 = ∑ 𝑟௜𝑥௜

௖௡
௜ୀଵ ; 𝑐 > 1 (Superlinear selection model) 

1. Notice that when 𝑐 = 1, these equations reduce to the exponentially growing linear 
selection model. If 𝑐 < 1, population growth is slower (subexponential), and if 𝑐 > 1, 
growth is faster than exponential (superexponential). An extreme example of 
subexponential growth is immigration at a constant rate. A superexponential growth 
example is sexual reproduction, where two organisms must meet in order to replicate. 

2. Let’s take the simple case 𝑛 = 3. Show that in this case, if the population lies in the 
simplex 𝑆ଷ (so 𝑥ଵ + 𝑥ଶ + 𝑥ଷ = 1), then the rate of change (𝑥̇ଵ + 𝑥̇ଶ + 𝑥̇ଷ) of the entire 
population is equal to zero. What does this imply for evolution in relation to 𝑆ଷ? 

3. Design a type ̀ Selector` (in module ̀ Selection`) that uses RK2 to simulate the evolution 
of a population of three types. Your demo() function will use the type’s constructor to 
set the value of 𝑐 and the three specific growth rates, then call the method 
`simulate!()` to evolve the population over time T, starting from initial frequencies 
[x0,y0,z0], and plot this evolution graphically in the simplex 𝑆ଷ. For example: 

sel = Selector(1.2,[0.2,0.3,0.4]); sel.simulate!([0.3,0.3.0.4],20) 

4. Use your Selector type to demonstrate that 𝑐 < 1 leads to Survival of All, while 𝑐 > 1 
leads to Survival of the First. 

Summary 
 Charles Darwin and Alfred Russell Wallace realised in 1858 that all resources are 

limited, which necessarily leads to selection and prevents exponential growth. 
 The linear selection model is 𝑥̇௜ = 𝑥௜(𝑟௜ − 𝑅), where 𝑥௜  and 𝑟௜ are the frequency and 

specific replication rate, or fitness, of population type 𝑖; 𝑅 = ∑ 𝑥௜𝑟௜
௡
௜ୀଵ = 𝒙 ∙ 𝒓 is the 

average fitness of the population; and ∑ 𝑥௜
௡
௜ୀଵ = 1. 

 The condition ∑ 𝑥௜
௡
௜ୀଵ = 1 means that a population in the linear selection model is 

represented by a point moving over time within a simplex 𝑆௡ whose 𝑘-th vertex 
represents the presence of only the single population type 𝑘 ∈ {1,2, … , 𝑛}. 

 Linear selection always leads to Survival of the Fittest: the movement of the 
population from any interior point of 𝑆௡ to the vertex 𝑘 whose fitness is highest. 

 Sublinear selection (𝑥̇௜ = 𝑟௜𝑥௜
௖ − 𝑅𝑥௜, where 𝑅 = ∑ 𝑟௜𝑥௜

௖௡
௜ୀଵ  and 𝑐 < 1) models 

subexponential growth such as immigration; it leads to Survival of All. 
 Superlinear selection (𝑥̇௜ = 𝑟௜𝑥௜

௖ − 𝑅𝑥௜, where 𝑅 = ∑ 𝑟௜𝑥௜
௖௡

௜ୀଵ  and 𝑐 > 1) models 
superexponential growth such as sexual replication; it leads to Survival of the First. 


