
Project rubric for (authors’ names):
Criterion Expert (1) Skilled (2) Apprentice (3) Learner (4) (5)

Appearance Information clearly, attractively presented.
Fonts reflect importance of items. Graphics
clarify topics. Structure helps audience to
understand.

Information clear and attractive.
Font or graphics confusing. Structure
helps audience to understand.

Information presented clearly. Font
uneven. Structure and graphics are
confusing or unclear.

Structure, graphics and text
unclear or missing. Fonts
uneven.

Scientific
language

Authors’ use of technical language shows they
understand their subject’s background
knowledge. They minimise their use of jargon
and define all necessary terms and acronyms.

Language shows authors understand
the background knowledge of the
subject. Jargon is appropriate. Not all
terms and acronyms are defined.

Language shows that authors
understand the background
knowledge of the subject. Too much
jargon and undefined acronyms.

Informal language: authors do
not seem to understand the
subject properly. Some
scientific terms incorrectly.

Code
structure

Code is clearly organised and formatted: short,
coherent methods, logical indentation, and
clear linebreaks (lines under 100 characters)
make the code easy to follow.

Code is easy to read with minor
formatting/indentation mistakes,
e.g.: bracket-matching.

Code is generally easy to follow, but
logical formatting is poor.

Code is readable only by
someone who knows what it
is supposed to be doing.

Clarity and
coherence

Code follows a clear, consistent conceptual
metaphor. Program header clearly states this
metaphor. Coding components (comments,
variable and method names) consistently
declare their role by reference to metaphor.

Conceptual metaphor is present, but
unclearly stated. Coding components
mostly refer to this metaphor for
clarity.

Conceptual metaphor is present, but
unclearly stated. Relationship of
coding components to this metaphor
are generally unclear. Use of magic
numbers.

Program has no clear
conceptual metaphor.

Comments Comments indicate clearly what code is doing,
using clear, simple language that is
appropriately positioned and formatted.

Header and inline comments make
the code easier to understand.

Inline comments are embedded in the
code and separate logical code
sections.

Inline comments are
embedded in the code.

Variable
naming

Variables’ names express simply and briefly
their purpose in the program.

Variable names are awkwardly long
but express their purpose clearly.

Variable names express only unclearly
their purpose in program.

Variable names express their
purpose only very vaguely.

Data types Variable types (array, logical, …) are used
efficiently to produce correct results.

Variable types used efficiently to
produce mostly correct results.

Variable types are used efficiently but
produce incorrect results.

Variable types are used
inefficiently/incorrectly.

Control
structures

Control structures (selection, iteration, …) are
used efficiently to produce correct results.

Control structures efficiently used to
give mostly correct results.

Control structures used efficiently but
produce incorrect results.

Control structures are used
inefficiently/incorrectly.

Modularity
(modules,
functions)

Modular architecture is clear and easy to
follow. Data and method responsibility cleanly
factorised into modules to minimise rippling.

Modularity is clear and easy to follow
but responsibility allocation permits
some rippling.

Modularity is easy to follow but global
data permit excessive rippling.

Data-, but not method-,
responsibility is allocated
modularly.

Validation Program fulfils all specifications, and performs
exception-checking for errors and out-of-range
data.

Program runs and meets all
specifications. Performs some
checking for entry and range errors.

Program produces correct results but
displays them incorrectly. Some
checking for entry and range errors.

Program gives correct results
but displays them incorrectly.
No error-checking.

Efficiency The code is highly efficient: stores multiply
used data, reduces processing steps without
sacrificing readability or comprehensibility.

The code is efficient without
sacrificing readability or
comprehensibility.

The code is fairly efficient without
sacrificing readability or
comprehensibility.

Code is inefficiently patched
together from mismatching
partial solutions.

Total = / 11 =

