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Setup

Given a nominal state trajectory x̂(t) and control trajectory u(t), we apply
the controls to the experimental system and retrieve a set of measurements
(abusing notation) y(t) from the (possibly hidden) experimental trajectory x̄(t).
Schematically we have:

u(t) −→ x̄(u(t), t) −→ g(x̄(t), t) = ȳ(t)

u(t) −→
model︷ ︸︸ ︷

x̂(t) −→ g(x̂(t)) = ŷ(t)
↘ ↘

x̄(t) −→ g(x̄(t))︸ ︷︷ ︸
experiment

= ȳ(t) −→ ∆y = ȳ − ŷ

uk −→ ȳk −→ ∆yk −→ QP(∆yk) −→ (∆x,∆u) −→ uk+1

which coincides with the simplified model situation:

u(t) −→ x̂(u(t), t) −→ g(x̂(t), t) = ŷ(t)

We now have two sets of measurements:

� ŷ(t) : the nominal measurement

� ȳ(t) : the experimental measurement

Problem Formulation

Let us write

x̄(t) = x̂(t) + e(t)

where e(t) is the error in the experimental trajectory. To correct for this error,
we can find a correction term ∆x(t) s.t.
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g(x̄+∆x) = g(x̂+ e+∆x) = ŷ

For example, if g(x) = x is the identity function, i.e. we are trying to track the
trajectory:

∆x = −e

The real problem involves finding the corresponding correction to the controls:
∆u(t). This involves setting up a quadratic optimization problem.
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Quadratic Correction Problem

The goal is now to go from the measurement error ∆y to a state correction
∆x and a control correction ∆u by simultaneously solving two linear systems.
Schematically:

∆y
M ·∆x=∆y−−−−−−−→

g
∆x

D·∆z=0−−−−−→
f

∆u

Measurement Correction to State Correction

With ∆y ≡ ȳ − ŷ, we have

ȳ = g(x̄)

= g(x̂+ e)

≈ g(x̂) +
∂g

∂x̂
· e

= ŷ +
∂g

∂x̂
· e

which, with writing M̂ = ∂g/∂x̂ yields

∆y ≈ M̂ · e

and since g : Rn → Rm where m ≤ n, M̂ ∈ Rm×n is not necessarily invertible,
but we can use the Moore-Penrose pseudoinverse here to get a guess for e:

e ≈ M̂+ ·∆y ≡ ê

To tie the experimental measurements to the model measurements we require

ŷ = g(x̄+∆x)

≈ ȳ +
∂g

∂x̄
·∆x

= ȳ + M̄ ·∆x

which yields the condition

M̄ ·∆x = −∆y (1)

where
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M̄ j
i = ∂g(x̂+ e)ji

≈ ∂g(x̂+ ê)ji

≈ ∂g(x̂)ji +
∑
k

(
∂2g(x̂)

)jk
i

êk

= M̂ j
i +

∑
kl

(
∂2g(x̂)

)jk
i

(
M̂+

)l

k
∆yl

where

∂g(·) = ∂g

∂x

∣∣∣∣
x=·

State Correction to Control Correction

To propagate the state correction to the control correction, we utilize the dy-
namics constraint, f(zt, zt+1) = 0, where we define the knot point

zt =

(
xt

ut

)
Let’s write zt =

(
zt

zt+1

)
. Then we have

0 = f(ẑt +∆zt)

≈ f(ẑt) + ∂f(ẑt) ·∆zt

which yields, with D̂ = ∂f(ẑt)

D̂ ·∆zt = 0 (2)

Putting it all together

We seek to find the solution to

minimize
∆x1:T , ∆u1:T

1

2

∑
t

∆x⊤
t Q∆xt +∆u⊤

t R∆ut

subject to M̄ ·∆xτ = −∆yτ ∀τ
D̂ ·∆zt = 0 ∀t

where the τs are the measurement times.
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Building the KKT matrix from this problem, we can solve the system and
extract ∆u(t) and repeat the procedure until convergence.

This problem, which returns ∆Z is referred to as

∆Z = QuadraticProblem(Ẑ,∆Y )

KKT Matrix (for just single quantum state and controls)

Below we use:

� n = dim zt = dimxt + dimut

� d = dimxt = dim f(zt, zt+1)

� c = dimut

� m = dim yt

� M = # of measurements

For a trajectory Z = vec(z1:T ), we need to construct the matrix(
H A⊤

A 0

)
where H is the Hessian of the cost function:

H =

T⊕
t=1

(Q⊕R) = IT×T ⊗ (Q⊕R)

and A is the constraint Jacobian:

A =

(
∂F
∂G

)
with

∂F =

∂f(ẑ1)
. . .

∂f(ẑT−1)

 ∈ Rd(T−1)×nT

and

∂G =


. . .

∂g(x̄τ ) 0
m×(a+c)

. . .

 ∈ RmM×nT

where τ = t1, . . . , tM are the measurement times.
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For the constraints we then have

∂F ·∆Z = 0 and ∂G ·∆Z = −∆Y

where again

∆Y = Ȳ − Ŷ

An Alternative Quadratic Problem

In the regime of noisy measurements, satisfying both the dynamics constraints
and the measurement constraints becomes infeasible. To overcome this we we
can relax the measurement into a maximum likelihood problem by assuming
additive gaussian noise w ∼ N (0,Σ). To see this let’s write

ȳ = ŷ −M ·∆x+ w =⇒ ȳ ∼ N (ŷ −M ·∆x,Σ)

=⇒ ∆y ∼ N (−M ·∆x,Σ)

where Σ is the covariance matrix of the measurement noise, which we can get
from the experiment. To make the following clearer, let’s define the parameter-
ized distribution over ∆y s.t.

∆y ∼ p(∆x) = N (−M ·∆x,Σ)

then, given an observation ȳ, we can find the MLE for the parameter ∆x as the
solution to the following optimization problem:

max
∆x

log p(∆x) =⇒ min
∆x

1

2
(∆y +M ·∆x)

⊤
Σ−1(∆y +M ·∆x)

=⇒ min
∆x

1

2
∆x⊤(M⊤Σ−1M

)
∆x+

(
∆y⊤Σ−1M

)
∆x

We can then augment our initial problem with this objective term and remove
the measurement constraint. This yields the following problem:

minimize
∆x1:T , ∆u1:T

1

2

∑
t

∆x⊤
t Q∆xt +∆u⊤

t R∆ut

+
∑
τ

1

2
∆x⊤

τ

(
M⊤

τ Σ−1Mτ

)
∆xτ +

(
∆y⊤τ Σ

−1Mτ

)
∆xτ

subject to D̂ ·∆zt = 0 ∀t
− umax − ût < ∆ut < umax − ût

∆u1 = ∆uT = 0
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ILC Algorithm

Tying everything together, iterative learning control (ILC) solves the aforemen-
tioned quadratic problem and updates the trajectory iteratively until conver-
gence. The following algorithm codifies this:

Algorithm 1: Iterative Control Learning

Data: Ẑgoal, tol > 0, α = 0.5, β = 0.1,
Result: U
Y goal ← measure(Ẑgoal) = vec(yτ1:τM )
Ẑ ← Ẑgoal

U ← controls(Ẑ) = vec(u1:T )
Ȳ ← experiment(U) = vec(ȳτ1:τM )
∆Y ← Ȳ − Y goal

k ← 1
while |∆Y | > tol do

∆Z ← β · QuadraticProblem(Ẑ,∆Y )
Ẑnext ← Ẑ +∆Z
ȳT,next ← measure final state(Ẑnext)
∆yT,next ← ȳT,next − ȳT,goal

while ∥∆yT,next∥p > ∥∆yT ∥; // Backtracking line search

do
∆Z ← α ·∆Z
Ẑnext ← Ẑ +∆Z
ȳT,next ← measure final state(Ẑnext)
∆yT,next ← ȳT,next − ȳT,goal

end

Ẑ ← Ẑnext

U ← controls(Ẑ)
Ȳ ← experiment(U)
∆Y ← Ȳ − Y goal

k ← k + 1
end
return U
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1 Misc.

minimize
∆x,∆u

∥∆y∥2 = ∥∂xg ·∆x∥2 +∆y⊤ · ∂xg ·∆x

subject to ∂zf ·∆z = 0

∆y = g(x̂+ e+∆x)− ŷ

≈ g(x̂) + ∂xg · e+ ∂xg ·∆x− ŷ

minimize
∆x,∆u

1

2

∥∥∆yk+1
∥∥2 =

1

2

∥∥g(x̄k +∆x)− ŷ
∥∥2

≈ 1

2

∥∥g(x̄k) +M∆x− ŷ
∥∥2

=
1

2

∥∥∆yk +M∆x
∥∥2

minimize
∆x,∆u

1

2
∆x⊤M⊤M∆x+∆y⊤M∆x

subject to ∂f · (∆xt+1,∆xt,∆ut)
⊤
= 0
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