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Setup

Given a nominal state trajectory Z(¢) and control trajectory u(t), we apply
the controls to the experimental system and retrieve a set of measurements
(abusing notation) y(¢) from the (possibly hidden) experimental trajectory Z(t).
Schematically we have:

model
u(t) — &(t) — g(2(t) = §(t)
hY hY
— Ay=y—yg

z(t) — g(z(t)) = y(t)
—_——

experiment
uP — ¥ — Ay — QP(AYF) — (Az, Au) — uFt!
which coincides with the simplified model situation:
u(t) — &(u(t),t) — g(&(t),t) = 9(t)
We now have two sets of measurements:

e §(t) : the nominal measurement

e 7(t) : the experimental measurement

Problem Formulation
Let us write

#(t) = () + e(t)

where e(t) is the error in the experimental trajectory. To correct for this error,
we can find a correction term Axz(t) s.t.



9T+ Az)=g(Z+e+Ax)=7]

For example, if g(x) = x is the identity function, i.e. we are trying to track the
trajectory:

Ar = —e

The real problem involves finding the corresponding correction to the controls:
Au(t). This involves setting up a quadratic optimization problem.



Quadratic Correction Problem

The goal is now to go from the measurement error Ay to a state correction
Az and a control correction Au by simultaneously solving two linear systems.
Schematically:

M-Az=

Ay 2 Ag
g

D-Az=0
z Au

Measurement Correction to State Correction

With Ay = ¢ — g, we have

which, with writing M = dg/di yields

Ay~ M e

and since g : R — R™ where m < n, M € R™" is not necessarily invertible,
but we can use the Moore-Penrose pseudoinverse here to get a guess for e:

ex Mt - Ay=eé

To tie the experimental measurements to the model measurements we require

which yields the condition

where



where

State Correction to Control Correction

To propagate the state correction to the control correction, we utilize the dy-

namics constraint, f(z¢, z;+1) = 0, where we define the knot point

Tt
Zt =
Uy

) . Then we have

. Z
Let’s write z; = t
Zt41

O = f(it —|— AZt)
~ f(2e) + 0f (%) - Azy

which yields, with D = df(z,)

Putting it all together
We seek to find the solution to

1
minimize 5 Z Az] QAz, + Au/ RAu,
t

Azir, Aurr
subject to M - Az, = —Ay, V7
DAz, =0 vt

where the 7s are the measurement times.



Building the KKT matrix from this problem, we can solve the system and
extract Au(t) and repeat the procedure until convergence.

This problem, which returns AZ is referred to as

AZ = QuadraticProblem(Z, AY)

KKT Matrix (for just single quantum state and controls)
Below we use:

e n =dimz = dimx; + dim u;

o d=dimaz; = dim f(z¢, 2¢41)

e ¢c=dimu;

o m = dimy,

e M = # of measurements

For a trajectory Z = vec(z1.1), we need to construct the matrix
H AT
A 0

where H is the Hessian of the cost function:

H =
t

QeR) =I"""®(Q&R)

T
=1

and A is the constraint Jacobian:

oF
1= (36)
with
of(z1)
OF — . c RUT—1)xnT
Of(zr-1)

and

oG = 89(537) 0m><(a+c) c RmMXnT
where 7 = t1,...,t) are the measurement times.



For the constraints we then have

OF -AZ =0 and 0G-AZ =-AY
where again

AY =Y -Y

An Alternative Quadratic Problem

In the regime of noisy measurements, satisfying both the dynamics constraints
and the measurement constraints becomes infeasible. To overcome this we we
can relax the measurement into a maximum likelihood problem by assuming
additive gaussian noise w ~ N(0,X). To see this let’s write

M -Azx+w = g~N@G—M- Az, Y)
= Ay ~N(—M - Az,¥)

<

g:

where ¥ is the covariance matrix of the measurement noise, which we can get
from the experiment. To make the following clearer, let’s define the parameter-
ized distribution over Ay s.t.

Ay ~p(Az) =N(—M - Az, X)

then, given an observation g, we can find the MLE for the parameter Ax as the
solution to the following optimization problem:

1
§(Ay+M~Ax)TE*1(Ay+M~Ax)
1
= min Az (M'S'M)Az + (Ay"S7' M)Az
Az 2

1 A i
max ogp(Azr) = min

We can then augment our initial problem with this objective term and remove
the measurement constraint. This yields the following problem:

1
inimi = g Az QA Au] RA
AIinllilTl?H&lEle:T 5 t r, QAzy + Au, RAu,
+ § :leT (M S™' M)Az, + (Ay 7'M, ) Az,
- 2 T T T
subject to D -Az, =0 V¢

— Umax — ﬁ/t < Aut < Umax — ﬁ/t
Aup = Aur =0



ILC Algorithm

Tying everything together, iterative learning control (ILC) solves the aforemen-
tioned quadratic problem and updates the trajectory iteratively until conver-
gence. The following algorithm codifies this:

Algorithm 1: Iterative Control Learning

Data: Zgoal, tol >0, a=0.5, 5 =0.1,
Result: U
veoal o measure(Z5°) = vec(yryiry, )
7« zeoal
U < controls(Z) = vec(uy.r)
Y < experiment(U) = vec(r,.ry, )
AY « Y — yeodl
k<1
while |AY| > tol do
AZ + - QuadraticProblem(Z, AY))
lecxt — Z + AZ
UT next <— measure_final_state( Anext)
AyT,next — gT,next - gT,goal
while [|Ayr,neal|, > |Ayrll; // Backtracking line search
do
AZ «+— a-AZ
Znext — Z + AZ
UTnext < measure_final_state( Ancxt)
AyT,next <~ gT,next - gT,goal
end
Z — Znext
U < controls(Z)
Y ¢+ experiment(U)
AY Y —yeeal

k+—k+1
end

return U




1 Misc.

minimize ||Ay|? = |0.9 - Az|]* + Ay - 0,9 - Ax
Ax,Au

subject to O,f - Az =10

Ay=g(@+e+ Az)—7
g('i)"i_awg'e""azg'Aw_Q

Q

1 1
minimize || Ay* | = Zlg(2* + Az) — g

~ %Hg(i"“)—i—MAx—;& ?

= %HAyk + MAxH2

1
miAnirilize iAzTMTMAz + Ay MAz

subject to  Of - (Axy1, Ay, Aut)—r =0



