
Automatic Differentiation for Computational
Engineering

Kailai Xu and Eric Darve

CME 216 AD 1 / 47

Outline

1 Overview

2 Computational Graph

3 Forward Mode

4 Reverse Mode

5 AD for Physical Simulation

6 AD Through Implicit Operators

7 Conclusion

CME 216 AD 2 / 47

Overview

Gradients are useful in many applications

Mathematical Optimization

min
x∈Rn

f (x)

Using the gradient descent method:

xn+1 = xn − αn∇f (xn)

Sensitivity Analysis
f (x + ∆x) ≈ f ′(x)∆x

Machine Learning
Training a neural network using automatic differentiation
(back-propagation).
Solving Nonlinear Equations Solve a nonlinear equation f (x) = 0 using
Newton’s method

xn+1 = xn −
f (xn)

f ′(xn)

CME 216 AD 3 / 47

Terminology

Deriving and implementing gradients are a challenging and
all-consuming process.

Automatic differentiation: a set of techniques to numerically evaluate
the derivative of a function specified by a computer program
(Wikipedia). It also bears other names such as autodiff, algorithmic
differentiation, computational differentiation, and back-propagation.

There are a lot of AD softwares
1 TensorFlow and PyTorch: deep learning frameworks in Python
2 Adept-2: combined array and automatic differentiation library in C++
3 autograd: efficiently derivatives computation of NumPy code.
4 ForwardDiff.jl, Zygote.jl: Julia differentiable programming packages

This lecture: how to compute gradients using automatic
differentiation (AD)

Forward mode, reverse mode, and AD for implicit solvers

CME 216 AD 4 / 47

AD Software

https://github.com/microsoft/ADBench

CME 216 AD 5 / 47

https://github.com/microsoft/ADBench

Finite Differences

f ′(x) ≈ f (x + h)− f (x)

h
, f ′(x) ≈ f (x + h)− f (x − h)

2h

Derived from the definition of derivatives

f ′(x) = lim
h→0

f (x + h)− f (x)

h

Conceptually simple.

Curse of dimensionalties: to compute the gradients of f : Rm → R,
you need at least O(m) function evaluations.

Huge numerical error: roundoff error.

CME 216 AD 6 / 47

Finite Difference

f (x) = sin(x) f ′(x) = cos(x) x0 = 0.1

CME 216 AD 7 / 47

Finite Difference

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2017). Automatic
differentiation in machine learning: a survey. The Journal of Machine Learning Research, 18(1),
5595-5637.

CME 216 AD 8 / 47

Symbolic Differentiation

Symbolic differentiation computes exact derivatives (gradients): there
is no approximation error.

It works by recursively applies simple rules to symbols

d

dx
(c) = 0

d

dx
(x) = 1

d

dx
(u + v) =

d

dx
(u) +

d

dx
(v)

d

dx
(uv) = v

d

dx
(u) + u

d

dx
(v)

. . .

Here c is a variable independent of x , and u, v are variables
dependent on x .

There may not exist convenient expressions for the analytical
gradients of some functions. For example, a blackbox function from a
third-party library.

CME 216 AD 9 / 47

Symbolic Differentiation

Symbolic differentiation can lead to complex and redundant
expressions

CME 216 AD 10 / 47

Automatic Differentiation

AD is neither finite difference nor symbolic differentiation.

It works by recursively applies simple rules to values

d

dx
(c) = 0

d

dx
(x) = 1

d

dx
(u + v) =

d

dx
(u) +

d

dx
(v)

d

dx
(uv) = v

d

dx
(u) + u

d

dx
(v)

. . .

Here c is a variable independent of x , and u, v are variables
dependent on x .

It evaluates numerically gradients of “function units” using symbolic
differentiation, and chains the computed gradients using the chain rule

df (g(x))

dx
= f ′(g(x))g ′(x)

It is efficient (linear in the cost of computing the function itself) and
numerically stable.

CME 216 AD 11 / 47

Outline

1 Overview

2 Computational Graph

3 Forward Mode

4 Reverse Mode

5 AD for Physical Simulation

6 AD Through Implicit Operators

7 Conclusion

CME 216 AD 12 / 47

Computational Graph

The “language” for automatic differentiation is computational graph.
The computational graph is a directed acyclic graph (DAG).
Each edge represents the data: a scalar, a vector, a matrix, or a high
dimensional tensor.
Each node is a function that consumes several incoming edges and
outputs some values.

J = f4(u1, u2, u3, u4),

u2 = f1(u1,θ),

u3 = f2(u2,θ),

u4 = f3(u3,θ).

u1
u2u1 u3

u4

J

f1 f2 f3

f4

θ
Let’s build a computational graph for computing

z = sin(x1 + x2) + x2
2x3

CME 216 AD 13 / 47

Building a Computational Graph

z = sin(x1 + x2) + x2
2x3

CME 216 AD 14 / 47

Building a Computational Graph

z = sin(x1 + x2) + x2
2x3

CME 216 AD 15 / 47

Building a Computational Graph

z = sin(x1 + x2) + x2
2x3

CME 216 AD 16 / 47

Computing Gradients from a Computational Graph

Automatic differentiation works by propagating gradients in the
computational graph.

Two basic modes: forward-mode and backward-mode. Forward-mode
propagates gradients in the same direction as forward computation.
Backward-mode propagates gradients in the reverse direction of
forward computation.

CME 216 AD 17 / 47

Computing Gradients from a Computational Graph

Different computational graph topologies call for different modes of
automatic differentiation.

One-to-many: forward-propagation⇒forward-mode AD.

Many-to-one: back-propagation⇒reverse-mode AD.

CME 216 AD 18 / 47

Outline

1 Overview

2 Computational Graph

3 Forward Mode

4 Reverse Mode

5 AD for Physical Simulation

6 AD Through Implicit Operators

7 Conclusion

CME 216 AD 19 / 47

Automatic Differentiation: Forward Mode AD

The forward-mode automatic differentiation uses the chain rule to
propagate the gradients.

∂f ◦ g(x)

∂x
= f ′(g(x))g ′(x)

Compute in the same order as function evaluation.

Each node in the computational graph

Aggregate all the gradients from up-streams.
Forward the gradient to down-stream nodes.

CME 216 AD 20 / 47

Example: Forward Mode AD

Let’s consider a specific way for computing

f (x) =

 x4

x2 + sin(x)
− sin(x)



x

y1 = x2 y2 = sin x

y5 = − y2y3 = y21 y4 = y1 + y2 (y1, y
′
1) = (x2, 2x)

(y2, y
′
2) = (sin x , cos x)

(y3, y
′
3) = (y2

1 , 2y1y
′
1) = (x4, 4x3)

(y4, y
′
4) = (y1 + y1, y

′
1 + y ′2)

= (x2 + sin x , 2x + cos x)

(y5, y
′
5) = (−y2,−y ′2) = (− sin x ,− cos x)

CME 216 AD 21 / 47

Example: Forward Mode AD

Let’s consider a specific way for computing

f (x) =

 x4

x2 + sin(x)
− sin(x)



x

y1 = x2 y2 = sin x

y5 = − y2y3 = y21 y4 = y1 + y2 (y1, y
′
1) = (x2, 2x)

(y2, y
′
2) = (sin x , cos x)

(y3, y
′
3) = (y2

1 , 2y1y
′
1) = (x4, 4x3)

(y4, y
′
4) = (y1 + y1, y

′
1 + y ′2)

= (x2 + sin x , 2x + cos x)

(y5, y
′
5) = (−y2,−y ′2) = (− sin x ,− cos x)

CME 216 AD 21 / 47

Example: Forward Mode AD

Let’s consider a specific way for computing

f (x) =

 x4

x2 + sin(x)
− sin(x)



x

y1 = x2 y2 = sin x

y5 = − y2y3 = y21 y4 = y1 + y2 (y1, y
′
1) = (x2, 2x)

(y2, y
′
2) = (sin x , cos x)

(y3, y
′
3) = (y2

1 , 2y1y
′
1) = (x4, 4x3)

(y4, y
′
4) = (y1 + y1, y

′
1 + y ′2)

= (x2 + sin x , 2x + cos x)

(y5, y
′
5) = (−y2,−y ′2) = (− sin x ,− cos x)

CME 216 AD 21 / 47

Example: Forward Mode AD

Let’s consider a specific way for computing

f (x) =

 x4

x2 + sin(x)
− sin(x)



x

y1 = x2 y2 = sin x

y5 = − y2y3 = y21 y4 = y1 + y2 (y1, y
′
1) = (x2, 2x)

(y2, y
′
2) = (sin x , cos x)

(y3, y
′
3) = (y2

1 , 2y1y
′
1) = (x4, 4x3)

(y4, y
′
4) = (y1 + y1, y

′
1 + y ′2)

= (x2 + sin x , 2x + cos x)

(y5, y
′
5) = (−y2,−y ′2) = (− sin x ,− cos x)

CME 216 AD 21 / 47

Example: Forward Mode AD

Let’s consider a specific way for computing

f (x) =

 x4

x2 + sin(x)
− sin(x)



x

y1 = x2 y2 = sin x

y5 = − y2y3 = y21 y4 = y1 + y2 (y1, y
′
1) = (x2, 2x)

(y2, y
′
2) = (sin x , cos x)

(y3, y
′
3) = (y2

1 , 2y1y
′
1) = (x4, 4x3)

(y4, y
′
4) = (y1 + y1, y

′
1 + y ′2)

= (x2 + sin x , 2x + cos x)

(y5, y
′
5) = (−y2,−y ′2) = (− sin x ,− cos x)

CME 216 AD 21 / 47

Summary

Forward mode AD reuses gradients from upstreams. Therefore, this
mode is useful for few-to-many mappings

f : Rn → Rm, n� m

Applications: sensitivity analysis, uncertainty quantification, etc.

Consider a physical model f : Rn → Rm, let x ∈ Rn be the quantity of
interest (usually a low dimensional physical parameter), uncertainty
propagation method computes the perturbation of the model output
(usually a large dimensional quantity, i.e., m� 1)

f (x + ∆x) ≈ f (x) + f ′(x)∆x

CME 216 AD 22 / 47

Outline

1 Overview

2 Computational Graph

3 Forward Mode

4 Reverse Mode

5 AD for Physical Simulation

6 AD Through Implicit Operators

7 Conclusion

CME 216 AD 23 / 47

Reverse Mode AD

df (g(x))

dx
= f ′(g(x))g ′(x)

Computing in the reverse order of forward computation.

Each node in the computational graph

Aggregates all the gradients from down-streams
Back-propagates the gradient to upstream nodes.

CME 216 AD 24 / 47

Example: Reverse Mode AD

z = sin(x1 + x2) + x2
2x3

CME 216 AD 25 / 47

Example: Reverse Mode AD

z = sin(x1 + x2) + x2
2x3

CME 216 AD 26 / 47

Example: Reverse Mode AD

z = sin(x1 + x2) + x2
2x3

CME 216 AD 27 / 47

Example: Reverse Mode AD

z = sin(x1 + x2) + x2
2x3

CME 216 AD 28 / 47

Summary

Reverse mode AD reuses gradients from down-streams. Therefore,
this mode is useful for many-to-few mappings

f : Rn → Rm, n� m

Typical application:

Deep learning: n = total number of weights and biases of the neural
network, m = 1 (loss function).
Mathematical optimization: usually there are only a single objective
function.

CME 216 AD 29 / 47

Summary

In general, for a function f : Rn → Rm

Mode Suitable for ... Complexity1 Application

Forward m� n ≤ 2.5 OPS(f (x)) UQ
Reverse m� n ≤ 4 OPS(f (x)) Inverse Modeling

There are also many other interesting topics

Mixed mode AD: many-to-many mappings.
Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

1OPS is a metric for complexity in terms of fused-multiply adds.
CME 216 AD 30 / 47

Outline

1 Overview

2 Computational Graph

3 Forward Mode

4 Reverse Mode

5 AD for Physical Simulation

6 AD Through Implicit Operators

7 Conclusion

CME 216 AD 31 / 47

The Demand for Gradients in Physical Simulation

Solving nonlinear equations

Uncertainty quantification/sensitivity analysis

Inverse problems
Image source:
https://mirams.wordpress.com/2016/11/23/uncertainty-in-risk-prediction/,
http://fourier.eng.hmc.edu/e176/lectures/ch2/node5.html

CME 216 AD 32 / 47

https://mirams.wordpress.com/2016/11/23/uncertainty-in-risk-prediction/
http://fourier.eng.hmc.edu/e176/lectures/ch2/node5.html

Inverse Problem and Mathematical Optimization

Consider a bar under heating with a source term f (x , t). The right
hand side has fixed temperature and the left hand side is insulated.

The governing equation for the temperature u(x , t) is

∂u(x , t)

∂t
= κ(x)∆u(x , t) + f (x , t), t ∈ (0,T), x ∈ Ω

u(1, t) = 0 t > 0

κ(0)
∂u(0, t)

∂x
= 0 t > 0

The diffusivity coefficient is given by

κ(x) = a + bx

where a and b are unknown parameters.

CME 216 AD 33 / 47

Inverse Problem and Mathematical Optimization

Goal: calibrate a and b from u0(t) = u(0, t)

κ(x) = a + bx

CME 216 AD 34 / 47

Inverse Problem and Mathematical Optimization

This problem is a standard inverse problem. We can formulate the
problem as a PDE-constrained optimization problem

min
a,b

∫ t

0
(u(0, t)− u0(t))2dt

s.t.
∂u(x , t)

∂t
= κ(x)∆u(x , t) + f (x , t), t ∈ (0,T), x ∈ (0, 1)

− κ(0)
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]

κ(x) = ax + b

CME 216 AD 35 / 47

Numerical Partial Differential Equation

As with many physical modeling techniques, we discretize the PDE
using numerical schemes. Here is a finite difference scheme for the
PDE k = 1, 2, . . . ,m, i = 1, 2, . . . , n

uk+1
i − uki

∆t
= κi

uk+1
i+1 + uk+1

i−1 − 2uk+1
i

∆x2
+ f k+1

i

For initial and boundary conditions,
we have

−κ1
uk2 − uk0

2∆x
= 0

ukn+1 = 0

u0
i = 0

CME 216 AD 36 / 47

Numerical Partial Differential Equation

Rewriting the equation as a linear system, we have

A(a, b)Uk+1 = Uk + F k+1, Uk =


uk1
uk2
...
ukn


Here λi = −κi ∆t

∆x2 and

A(a, b) =



2λ1 + 1 −2λ1

−λ2 2λ2 + 1 −λ2

−λ3 2λ3 + 1 −λ3

. . .

. . . −λn−1

−λn 2λn + 1


, F k = ∆t


f k+1
1

f k+1
2

...
f k+1
n



CME 216 AD 37 / 47

Computational Graph for Numerical Schemes

The discretized optimization problem is

min
a,b

m∑
k=1

(uk1 − u0((k − 1)∆t))2

s.t. A(a, b)Uk+1 = Uk + F k+1, k = 1, 2, . . . ,m

U0 = 0

The computational graph for the forward computation (evaluating the
loss function) is

CME 216 AD 38 / 47

Implementation using an AD system

CME 216 AD 39 / 47

Outline

1 Overview

2 Computational Graph

3 Forward Mode

4 Reverse Mode

5 AD for Physical Simulation

6 AD Through Implicit Operators

7 Conclusion

CME 216 AD 40 / 47

Challenges in AD

Most AD frameworks only deal
with explicit operators, i.e., the
functions that has analytical
derivatives, or composition of
these functions.

Many scientific computing
algorithms are iterative or
implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ay = x
Nonlinear Implicit F (x , y) = 0

CME 216 AD 41 / 47

Example

Consider a function f : x → y , which is implicitly defined by

F (x , y) = x3 − (y3 + y) = 0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton’s
method and bisection method

y0 ← 0
k ← 0
while |F (x , yk)| > ε do

δk ← F (x , yk)/F ′y (x , yk)

yk+1 ← yk − δk
k ← k + 1

end while
Return yk

l ← −M, r ← M, m← 0
while |F (x ,m)| > ε do

c ← a+b
2

if F (x ,m) > 0 then
a← m

else
b ← m

end if
end while
Return c

CME 216 AD 42 / 47

Example

An efficient way is to apply the implicit function theorem. For our
example, F (x , y) = x3 − (y3 + y) = 0, treat y as a function of x and
take the derivative on both sides

3x2 − 3y(x)2y ′(x)− 1 = 0⇒ y ′(x) =
3x2 − 1

3y(x)2

The above gradient is exact.

CME 216 AD 43 / 47

Implicit Operators in Physical Modeling

Return to our bar problem, what if the material property is complex
and has a temperature-dependent governing equation?

∂u(x , t)

∂t
= κ(u)∆u(x , t) + f (x , t), t ∈ (0,T), x ∈ Ω

An implicit scheme is usually a nonlinear equation, and requires an
iterative solver (e.g., the Newton-Raphson algorithm) to solve

uk+1
i − uki

∆t
= κ(uk+1

i)
uk+1
i+1 + uk+1

i−1 − 2uk+1
i

∆x2
+ f k+1

i

Typical AD frameworks cannot handle this operator. We need to
differentiate through implicit operators.

This topic will be covered in a future lecture: physics constrained
learning.

CME 216 AD 44 / 47

Outline

1 Overview

2 Computational Graph

3 Forward Mode

4 Reverse Mode

5 AD for Physical Simulation

6 AD Through Implicit Operators

7 Conclusion

CME 216 AD 45 / 47

Conclusion

What’s covered in this lecture

Reverse mode automatic differentiation;
Forward mode automatic differentiation;
Using AD to solver inverse problems in physical modeling;
Automatic differentiation through implicit operators.

CME 216 AD 46 / 47

What’s Next

Physics constrained learning: inverse modeling using automatic
differentiation through implicit operators;

Neural networks and numerical schemes: substitute the unknown
component in a physical system with a neural network and learn the
neural network with AD;

Implementation of inverse modeling algorithms in ADCME.

CME 216 AD 47 / 47

	Overview
	Computational Graph
	Forward Mode
	Reverse Mode
	AD for Physical Simulation
	AD Through Implicit Operators
	Conclusion

