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Overview

Gradients are useful in many applications

Mathematical Optimization

min
x∈Rn

f (x)

Using the gradient descent method:

xn+1 = xn − αn∇f (xn)

Sensitivity Analysis
f (x + ∆x) ≈ f ′(x)∆x

Machine Learning
Training a neural network using automatic differentiation
(back-propagation).
Solving Nonlinear Equations Solve a nonlinear equation f (x) = 0 using
Newton’s method

xn+1 = xn −
f (xn)

f ′(xn)
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Terminology

Deriving and implementing gradients are a challenging and
all-consuming process.

Automatic differentiation: a set of techniques to numerically evaluate
the derivative of a function specified by a computer program
(Wikipedia). It also bears other names such as autodiff, algorithmic
differentiation, computational differentiation, and back-propagation.

There are a lot of AD softwares
1 TensorFlow and PyTorch: deep learning frameworks in Python
2 Adept-2: combined array and automatic differentiation library in C++
3 autograd: efficiently derivatives computation of NumPy code.
4 ForwardDiff.jl, Zygote.jl: Julia differentiable programming packages

This lecture: how to compute gradients using automatic
differentiation (AD)

Forward mode, reverse mode, and AD for implicit solvers
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AD Software

https://github.com/microsoft/ADBench
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Finite Differences

f ′(x) ≈ f (x + h)− f (x)

h
, f ′(x) ≈ f (x + h)− f (x − h)

2h

Derived from the definition of derivatives

f ′(x) = lim
h→0

f (x + h)− f (x)

h

Conceptually simple.

Curse of dimensionalties: to compute the gradients of f : Rm → R,
you need at least O(m) function evaluations.

Huge numerical error: roundoff error.
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Finite Difference

f (x) = sin(x) f ′(x) = cos(x) x0 = 0.1
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Finite Difference

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2017). Automatic
differentiation in machine learning: a survey. The Journal of Machine Learning Research, 18(1),
5595-5637.
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Symbolic Differentiation

Symbolic differentiation computes exact derivatives (gradients): there
is no approximation error.

It works by recursively applies simple rules to symbols

d

dx
(c) = 0

d

dx
(x) = 1

d

dx
(u + v) =

d

dx
(u) +

d

dx
(v)

d

dx
(uv) = v

d

dx
(u) + u

d

dx
(v)

. . .

Here c is a variable independent of x , and u, v are variables
dependent on x .

There may not exist convenient expressions for the analytical
gradients of some functions. For example, a blackbox function from a
third-party library.
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Symbolic Differentiation

Symbolic differentiation can lead to complex and redundant
expressions
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Automatic Differentiation

AD is neither finite difference nor symbolic differentiation.

It works by recursively applies simple rules to values

d

dx
(c) = 0

d

dx
(x) = 1

d

dx
(u + v) =

d

dx
(u) +

d

dx
(v)

d

dx
(uv) = v

d

dx
(u) + u

d

dx
(v)

. . .

Here c is a variable independent of x , and u, v are variables
dependent on x .

It evaluates numerically gradients of “function units” using symbolic
differentiation, and chains the computed gradients using the chain rule

df (g(x))

dx
= f ′(g(x))g ′(x)

It is efficient (linear in the cost of computing the function itself) and
numerically stable.
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Computational Graph

The “language” for automatic differentiation is computational graph.
The computational graph is a directed acyclic graph (DAG).
Each edge represents the data: a scalar, a vector, a matrix, or a high
dimensional tensor.
Each node is a function that consumes several incoming edges and
outputs some values.

J = f4(u1, u2, u3, u4),

u2 = f1(u1,θ),

u3 = f2(u2,θ),

u4 = f3(u3,θ).

u1
u2u1 u3

u4

J

f1 f2 f3

f4

θ
Let’s build a computational graph for computing

z = sin(x1 + x2) + x2
2x3
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Building a Computational Graph
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Computing Gradients from a Computational Graph

Automatic differentiation works by propagating gradients in the
computational graph.

Two basic modes: forward-mode and backward-mode. Forward-mode
propagates gradients in the same direction as forward computation.
Backward-mode propagates gradients in the reverse direction of
forward computation.
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Computing Gradients from a Computational Graph

Different computational graph topologies call for different modes of
automatic differentiation.

One-to-many: forward-propagation⇒forward-mode AD.

Many-to-one: back-propagation⇒reverse-mode AD.
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Automatic Differentiation: Forward Mode AD

The forward-mode automatic differentiation uses the chain rule to
propagate the gradients.

∂f ◦ g(x)

∂x
= f ′(g(x))g ′(x)

Compute in the same order as function evaluation.

Each node in the computational graph

Aggregate all the gradients from up-streams.
Forward the gradient to down-stream nodes.
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Example: Forward Mode AD

Let’s consider a specific way for computing

f (x) =

 x4

x2 + sin(x)
− sin(x)



x

y1 = x2 y2 = sin x

y5 = − y2y3 = y21 y4 = y1 + y2 (y1, y
′
1) = (x2, 2x)

(y2, y
′
2) = (sin x , cos x)

(y3, y
′
3) = (y2

1 , 2y1y
′
1) = (x4, 4x3)

(y4, y
′
4) = (y1 + y1, y

′
1 + y ′2)

= (x2 + sin x , 2x + cos x)

(y5, y
′
5) = (−y2,−y ′2) = (− sin x ,− cos x)
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Summary

Forward mode AD reuses gradients from upstreams. Therefore, this
mode is useful for few-to-many mappings

f : Rn → Rm, n� m

Applications: sensitivity analysis, uncertainty quantification, etc.

Consider a physical model f : Rn → Rm, let x ∈ Rn be the quantity of
interest (usually a low dimensional physical parameter), uncertainty
propagation method computes the perturbation of the model output
(usually a large dimensional quantity, i.e., m� 1)

f (x + ∆x) ≈ f (x) + f ′(x)∆x
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Reverse Mode AD

df (g(x))

dx
= f ′(g(x))g ′(x)

Computing in the reverse order of forward computation.

Each node in the computational graph

Aggregates all the gradients from down-streams
Back-propagates the gradient to upstream nodes.
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Example: Reverse Mode AD

z = sin(x1 + x2) + x2
2x3
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Summary

Reverse mode AD reuses gradients from down-streams. Therefore,
this mode is useful for many-to-few mappings

f : Rn → Rm, n� m

Typical application:

Deep learning: n = total number of weights and biases of the neural
network, m = 1 (loss function).
Mathematical optimization: usually there are only a single objective
function.
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Summary

In general, for a function f : Rn → Rm

Mode Suitable for ... Complexity1 Application

Forward m� n ≤ 2.5 OPS(f (x)) UQ
Reverse m� n ≤ 4 OPS(f (x)) Inverse Modeling

There are also many other interesting topics

Mixed mode AD: many-to-many mappings.
Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

1OPS is a metric for complexity in terms of fused-multiply adds.
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The Demand for Gradients in Physical Simulation

Solving nonlinear equations

Uncertainty quantification/sensitivity analysis

Inverse problems
Image source:
https://mirams.wordpress.com/2016/11/23/uncertainty-in-risk-prediction/,
http://fourier.eng.hmc.edu/e176/lectures/ch2/node5.html
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Inverse Problem and Mathematical Optimization

Consider a bar under heating with a source term f (x , t). The right
hand side has fixed temperature and the left hand side is insulated.

The governing equation for the temperature u(x , t) is

∂u(x , t)

∂t
= κ(x)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ Ω

u(1, t) = 0 t > 0

κ(0)
∂u(0, t)

∂x
= 0 t > 0

The diffusivity coefficient is given by

κ(x) = a + bx

where a and b are unknown parameters.
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Inverse Problem and Mathematical Optimization

Goal: calibrate a and b from u0(t) = u(0, t)

κ(x) = a + bx
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Inverse Problem and Mathematical Optimization

This problem is a standard inverse problem. We can formulate the
problem as a PDE-constrained optimization problem

min
a,b

∫ t

0
(u(0, t)− u0(t))2dt

s.t.
∂u(x , t)

∂t
= κ(x)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ (0, 1)

− κ(0)
∂u(0, t)

∂x
= 0, t > 0

u(1, t) = 0, t > 0

u(x , 0) = 0, x ∈ [0, 1]

κ(x) = ax + b
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Numerical Partial Differential Equation

As with many physical modeling techniques, we discretize the PDE
using numerical schemes. Here is a finite difference scheme for the
PDE k = 1, 2, . . . ,m, i = 1, 2, . . . , n

uk+1
i − uki

∆t
= κi

uk+1
i+1 + uk+1

i−1 − 2uk+1
i

∆x2
+ f k+1

i

For initial and boundary conditions,
we have

−κ1
uk2 − uk0

2∆x
= 0

ukn+1 = 0

u0
i = 0
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Numerical Partial Differential Equation

Rewriting the equation as a linear system, we have

A(a, b)Uk+1 = Uk + F k+1, Uk =


uk1
uk2
...
ukn


Here λi = −κi ∆t

∆x2 and

A(a, b) =



2λ1 + 1 −2λ1

−λ2 2λ2 + 1 −λ2

−λ3 2λ3 + 1 −λ3

. . .

. . . −λn−1

−λn 2λn + 1


, F k = ∆t


f k+1
1

f k+1
2

...
f k+1
n


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Computational Graph for Numerical Schemes

The discretized optimization problem is

min
a,b

m∑
k=1

(uk1 − u0((k − 1)∆t))2

s.t. A(a, b)Uk+1 = Uk + F k+1, k = 1, 2, . . . ,m

U0 = 0

The computational graph for the forward computation (evaluating the
loss function) is
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Implementation using an AD system
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Challenges in AD

Most AD frameworks only deal
with explicit operators, i.e., the
functions that has analytical
derivatives, or composition of
these functions.

Many scientific computing
algorithms are iterative or
implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ay = x
Nonlinear Implicit F (x , y) = 0
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Example

Consider a function f : x → y , which is implicitly defined by

F (x , y) = x3 − (y3 + y) = 0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton’s
method and bisection method

y0 ← 0
k ← 0
while |F (x , yk)| > ε do

δk ← F (x , yk)/F ′y (x , yk)

yk+1 ← yk − δk
k ← k + 1

end while
Return yk

l ← −M, r ← M, m← 0
while |F (x ,m)| > ε do

c ← a+b
2

if F (x ,m) > 0 then
a← m

else
b ← m

end if
end while
Return c
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Example

An efficient way is to apply the implicit function theorem. For our
example, F (x , y) = x3 − (y3 + y) = 0, treat y as a function of x and
take the derivative on both sides

3x2 − 3y(x)2y ′(x)− 1 = 0⇒ y ′(x) =
3x2 − 1

3y(x)2

The above gradient is exact.
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Implicit Operators in Physical Modeling

Return to our bar problem, what if the material property is complex
and has a temperature-dependent governing equation?

∂u(x , t)

∂t
= κ(u)∆u(x , t) + f (x , t), t ∈ (0,T ), x ∈ Ω

An implicit scheme is usually a nonlinear equation, and requires an
iterative solver (e.g., the Newton-Raphson algorithm) to solve

uk+1
i − uki

∆t
= κ(uk+1

i )
uk+1
i+1 + uk+1

i−1 − 2uk+1
i

∆x2
+ f k+1

i

Typical AD frameworks cannot handle this operator. We need to
differentiate through implicit operators.

This topic will be covered in a future lecture: physics constrained
learning.
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Conclusion

What’s covered in this lecture

Reverse mode automatic differentiation;
Forward mode automatic differentiation;
Using AD to solver inverse problems in physical modeling;
Automatic differentiation through implicit operators.
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What’s Next

Physics constrained learning: inverse modeling using automatic
differentiation through implicit operators;

Neural networks and numerical schemes: substitute the unknown
component in a physical system with a neural network and learn the
neural network with AD;

Implementation of inverse modeling algorithms in ADCME.
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