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© Introduction to Lévy Processes
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Gaussian Processes

Random Walk of Pollen Seeds Robert Brown Albert Einstein

@ Brownian Motion: E(||x||?) o t

@ Gaussian Process: Brownian motion with drifts

W, =bt+¥B; beR? ¥ cRI*
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From Gaussian Proccesses to Lévy Processes

@ However, an increasing number of natural phenomena do not fit into
the relatively simple Brownian motion framework.

E([Ix]%) o< t”

E(l®)

@ Lévy processes generalize Gaussian processes by allowing a
heavy-tailed step-length distribution in the random walk. They have
been found successful in describing anomalous diffusion.
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Modeling with Lévy Processes

Bird flocking \ /P:edators Movement Patterns

Lévy Processes

éw‘ﬂ“'f*‘aﬁ’"""m""ﬁf“M.ﬂWl -0

Stocks Solid Mechanics
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© Inverse Modeling Methodology
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Mathematical Formulation

Definition (Lévy Processes)

The paths of Lévy processes X; can be described by

Nt
X; = bt+ZWt+ZJk
k=1

where b € R?, ¥ € R4 W, is a standard Brownian motion, N; is a
Poisson process, and Ji is an i.i.d. sequence of random variables, which
describes the jump.

The characteristic function of X; is described by
(€)= E[e'X0)] =
. 1 i .
oxp ¢ ((6.€) - 31€.A0) + [ (19 -1 e xtpaier) v(e) )|
Rd
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Inverse Modeling

The ultimate goal of inverse modeling is to make predictions of
future behaviors, which in turn requires us to find the causes of

behaviors.

@ Make Predictions = Forward Problem

(b,A,v) — Xat, Xoat, X3t - - -

@ Find Causes = Inverse Problem

Xat, Xoat, X3ae, ... — (b, A, v)

—lx

Application

Ll

Data Model
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Our Approach

Model

Data

Match the characteristic function!

Kailai Xu, Eric Darve (Stanford)

v(x) ~ vp(x) N

l Piccewis Liness Basis Functions  Radial Bass Functons Neursl Networks

$(6) ~ 9o(€) = exp [Atz (€465 — 1 - i(E, ) Ly 1) »s<m>wi]
i=1 4
I NN
min — ; | én(&i) — po(&n)II?
)= 13 exp((6, Xuoe - Xyan)), € € B
i=1

f
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Neural Networks

@ Unique challenge for estimating v(x): non-smoothness and
data-insufficiency (requires regularization).

@ Neural network is adaptive to discontinuities and acts as a regularizer.

o R ~—— Exact

; Data
-~ NNS§
-=NN10 Mt 0.5
-- NN20

v

Neural Network Piecewise Linear Radial Basis Functions
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© Application to Calibrating Lévy Processes
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Example 1: Multivariate a-stable Process

@ The multivariate a-stable process is a special Lévy process with the

characteristic function

P(§) = E (exp(iAt(X, §))) = exp <—At/ |<S,£>|ar(5)d5)

a=0.75,T(s) = 1|5 |>0.5(s),

and I'(s) =

Sd
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02 NNS 02 PLIO 02 i H RBEI0

- NNIO PL20 H RBF20

00 --- NN20 00| ---PL&O 00 --- RBE40

0o 1 2 3 4 5 6 o 1 2 3 4 5 6 o 1 2 3 4 5 6

Function NN5 NN10 NN20 PLI0 PL20 PL40 RBFI0 RBF20 RBF40

Step 0.7500 0.7499 0.7498 0.7493 0.7494 0.7500 0.7482 0.7483 0.7504

Constant  0.7499 0.7500 0.7500 0.7500 0.7500 0.7499 0.7500 0.7500 0.7499
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Example 2: Application to the Stock Market

@ ldentify the jump diffusion intensity and heteroscedasticity movement
of stock prices.
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EOG vs MSFT
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Outline

@ Open Source Software: ADCME
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ADCME: A Powerful Inverse Modeling Library for Scientific
Machine Learning

T Data T Deep Neural Networks pnrerlnw
Z N = -
% ‘m:_ 7 rrr__’r—_'r'rl—T_ / PoreFlow.jl

Geomechanics
! Viscoelasticity
A DC M E ‘ X : Multiphase Flow
o0 : Multiphysics

* coming soon

=2
Uy = CTUyy

onservation Laws

FwiFlow.jl y -
Multiphase Flow .j
Nonlocal Operators w _
https://github.com/lidongzh/FwiFlow.jl NNFEM.jI

Constitutive Law Modeling

ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity
https://github.com/kailaix/ADSeismic jl https://github.com/kailaix/NNFEM ;1
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