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Inverse Modeling

Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖22.
θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations. Solving for uh may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.
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Physics Based Machine Learning

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0

Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.
Physics based machine learning: the unknown function is
approximated by a deep neural network, and the physical constraints
are enforced by numerical schemes.
Satisfy the physics to the largest extent.
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Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 (1)

We can now apply a gradient-based optimization method to (1).
The key is to calculate the gradient descent direction gk

θk+1 ← θk − αgk
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Mathematical Fact
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Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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Challenges in AD

Most AD frameworks only deal
with explicit operators, i.e., the
functions that has analytical
derivatives, or composition of
these functions.

Many scientific computing
algorithms are iterative or
implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ay = x
Nonlinear Implicit F (x , y) = 0
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Example

Consider a function f : x → y , which is implicitly defined by

F (x , y) = x3 − (y3 + y) = 0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton’s
method and bisection method

y0 ← 0
k ← 0
while |F (x , yk)| > ε do

δk ← F (x , yk)/F ′
y (x , y

k)

yk+1 ← yk − δk

k ← k + 1
end while
Return yk

l ← −M, r ← M, m ← 0
while |F (x ,m)| > ε do

c ← a+b
2

if F (x ,m) > 0 then
a ← m

else
b ← m

end if
end while
Return c
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Example

An efficient way to do automatic differentiation is to apply the implicit
function theorem. For our example, F (x , y) = x3 − (y3 + y) = 0;
treat y as a function of x and take the derivative on both sides

3x2 − 3y(x)2y ′(x)− y ′(x) = 0 ⇒ y ′(x) =
3x2

3y2 + 1

The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume that we solve for uh = Gh(θ) with Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem
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FwiFlow.jl: Elastic Full Waveform Inversion for Subsurface
Flow Problems
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FwiFlow.jl: Fully Nonlinear Implicit Schemes

The governing equation is a nonlinear PDE
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For stability and efficiency, implicit methods are the industrial
standards.
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FwiFlow.jl: Showcase

Task 1: Estimating the permeability from seismic data

B.C. + Two-Phase Flow Equation + Wave Equation ⇒ Seismic Data

Task 2: Learning the rock physics model from sparse saturation data.
The rock physics model is approximated by neural networks

f1(S1; θ1) ≈ kr1(S1) f2(S1; θ2) ≈ kr2(S1)
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FwiFlow.jl: Showcase

Task 3: Learning the nonlocal (space or time) hidden dynamics from
seismic data. This is very challenging using traditional methods (e.g.,
the adjoint-state method) because the dynamics are history
dependent.

B.C. + Time-/Space-fractional PDE + Wave Equation ⇒ Seismic Data

Governing Equation σ = 0 σ = 5
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PoreFlow.jl: Inverse Modeling of Viscoelasticity

Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

divσ(u)− b∇p = 0

1

M
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∂t
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∂εv (u)

∂t
−∇ ·

!
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"
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σ = σ(ε, ε̇)

Approximate the constitutive relation by a neural network

σn+1 = NN θ(σ
n, εn) + Hεn+1
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PoreFlow.jl: Inverse Modeling of Viscoelasticity

Comparison with space varying linear elasticity approximation

σ = H(x , y)ε
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PoreFlow.jl: Inverse Modeling of Viscoelasticity
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Scopes, Challenges, and Future Work

Physics based Machine Learning: an innovative approach to inverse
modeling.

1 Deep neural networks provide a novel function approximator that outperforms traditional
basis functions in certain scenarios.

2 Numerical PDEs are not on the opposite side of machine learning. By expressing the
known physical constraints using numerical schemes and approximating the unknown with
machine learning models, we combine the best of the two worlds, leading to efficient and
accurate inverse modeling tools.

Automatic Differentiation: the core technique of physics based machine
learning.

1 The AD technique is not new; it has existed for several decades and many software exists.

2 The advent of deep learning drives the development of robust, scalable and flexible AD
software that leverages the high performance computing environment.

3 As deep learning techniques continue to grow, crafting the tool to incorporate machine
learning and AD techniques for inverse modeling is beneficial in scientific computing.

4 However, AD is not a panacea. Many scientific computing algorithms cannot be directly
translated to the AD language.
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ADCME

ADCME is the materialization of the physics based machine learning
concept.
ADCME allows users to use high performance and mathematical
friendly programming language Julia to implement numerical
schemes, and obtain the comprehensive automatic differentiation
functionality, heterogeneous computing capability, parallelism and
scalability provided by the TensorFlow backend.

https://github.com/kailaix/ADCME.jl
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A General Approach to Inverse Modeling
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