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https://github.com/kailaix/ADCME.jl

Inverse Modeling
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Function Inverse Problem

mfin Lp(up) st Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.
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Physics Based Machine Learning

main Lh(”h) S.t. Fh(NNg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Physics based machine learning: the unknown function is
approximated by a deep neural network, and the physical constraints
are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.
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Gradient Based Optimization

mein Lh(uh) s.t. Fh(Q, uh) =0 (1)

@ We can now apply a gradient-based optimization method to (1).
@ The key is to calculate the gradient descent direction g*
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and

numerical schemes share the same computational model: composition

of individual operators.
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Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the "AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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FEM/FVM on Structured Grids

@ Steady-state Navier-Stokes equation
1
(u-Viu= —;Vp +V-(v(x)Vu)+g
V-u=0

@ Inverse problem are ubiquitous in fluid dynamics:

Figure: Left: electronic cooling; right: nasal drug delivery.

ADCME ML for Computational Engineering 8 /11



FEM/FVM on Structure Grids
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FEM/FVM on Structure Grids

e Data: (u,v)

e Unknown: v(x) (represented by a deep neural network)

@ Prediction: p (absent in the training data)

@ The DNN provides regularization, which generalizes the estimation

better!
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A General Approach to Inverse Modeling
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* coming soon

FwiFlow.jl 4 -

Multiphase Flow .j
Nonlocal Operators Nv .
hitps://github.com/lidongzh/FwiFlowjl NNFEM.jl

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl
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