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Inverse Modeling

o Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

@ Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t
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Inverse Modeling
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Inverse Modeling for Subsurface Properties

There are many forms of subsurface inverse modeling problems.
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The Central Challenge

Can we have a general approach for solving these inverse problems?
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Parameter Inverse Problem

We can formulate inverse modeling as a PDE-constrained optimization
problem

m@in Lh(uh) s.t. F;,(O, Uh) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation uops, €.g., Lp(up) = |lup — tobs|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations. Solving for u, may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

mfin Lp(up) s.t. Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
Koopman operator in dynamical systems.

o Constitutive relations in solid mechanics.

@ Turbulent closure relations in fluid mechanics.

o Neural-network-based physical properties.
°

The candidate solution space is infinite dimensional.
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Physics Based Machine Learning

m@in Lh(Uh) S.t. Fh(NNg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Physics based machine learning: the unknown function is
approximated by a deep neural network, and the physical constraints
are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.
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Gradient Based Optimization

moin Lh(uh) s.t. Fh(9, uh) =0 (1)

e We can now apply a gradient-based optimization method to (1).
@ The key is to calculate the gradient descent direction gk
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.
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Forward Mode vs. Reverse Mode

@ Reverse mode automatic differentiation evaluates gradients in the
reverse order of forward computation.

@ Reverse mode automatic differentiation is a more efficient way to
compute gradients of a many-to-one mapping J(a1, a2, a3, as) =
suitable for minimizing a loss (misfit) function.
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Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “"AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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Challenges in AD

@ Most AD frameworks only deal T I
with explicit operators, i.e., the ey O @ R
functions with analytical PN
derivatives that are easy to : T v/ T N
implement. e

@ Many scientific computing ExplicitOperator  Implicit Operator

algorithms are iterative or
implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F(x)
Linear Implicit Ay = x
Nonlinear Implicit F(x,y)=0
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Implicit Operators in Subsurface Modeling

@ For reasons such as nonlinearity and stability, implicit operators
(schemes) are almost everywhere in subsurface modeling...

) Two-phase Flow Equations

Oy (xprA) + V- (pprupA) = 0

O (uprunA) + V- (s A (prtsy ® wy + B =
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Black Oil Equations

@ The ultimate solution: design “differentiable” implicit operators.
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Example

@ Consider a function f : x — y, which is implicitly defined by
Fix,y)=x>=(y*+y) =0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton's
method and bisection method

y0<_0 [« —M, r< M m+20
k<0 while |F(x, m)| > ¢ do
while |F(x, y¥)| > ¢ do c+ =P
(5k%F(X’yk)/F)//(X7yk) if F(X,m)>0then
YRk gk a+m
k—k+1 else
end while bm
Return y* end if
end while
Return ¢
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Example

@ An efficient way is to apply the implicit function theorem. For our
example, F(x,y) = x3 — (y3 4+ y) = 0, treat y as a function of x and
take the derivative on both sides

32— 3y ()2 (x) — 1= 0= y/(x) = 21
3y(x)?

The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning
mein Lp(up) st Fp(0,up) =0

@ Assume that we solve for up = Gp(6) with Fu(6, up) = 0, and then

Ln(0) = Ln(Gh(9))
@ Applying the implicit function theorem

OF(8, up) n OFp(8, up) OGH(0) 0
a0 dup, a0 a0

INCITION 7(8Fh(97 Uh)>*1 OFp(0, up)
, dup 00

o Finally we have

)*1 Z)Fh((), u;,)
up=Gp(6) 00

ALy(6) _ OLn(un) OGH(6) _ _ OLp(up) (th(e,u,,)
00 dup 00 dup dup,

up=Gp(0)

Kailai Xu and Eric Darve, Physics Constrained Learning for Data-driven Inverse Modeling from-Sparse Observations
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Parameter Inverse Problem: Elastic Full Waveform
Inversion for Subsurface Flow Problems
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Fully Nonlinear Implicit Schemes

@ The governing equation is a nonlinear PDE
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@ For stability and efficiency, implicit methods are the industrial
standards.
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Inverse Modeling Workflow

Traditionally, the inversion is typically solved by separately inverting the
wave equation (FWI) and the flow transport equations.
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Coupled Inversion vs. Decoupled Inversion

We found that coupled inversion reduces the artifacts from FWI
significantly and yields a substantially better results.
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Travel Time vs. Full Waveforms

We also compared using only travel time (left, Eikonal equation) versus
using full waveforms (right, FWI) for inversion. We found that full

waveforms do contain more information for making a better estimation of
the permeability property.

(a) (b)

120 120
1005 0 1005
- E . £
E 80 » E 20 >
e = Z200 =
a s [ =
@ 60 @ & 60 @
a gE © E
< 400 g
200 400 600 40 = 0 200 400 600 8OO 40 =

Distance (m) Distance (m)
20 20

The Eikonal equation solver was also implemented with physics constrained
learning!
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Check out our package FwiFlow.jl for wave and flow inversion and our
recently published paper for this work.

lidongzh / FwiFlow.jl
Water Resources Research
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Function Inverse Problem: Modeling Viscoelasticity

@ Multi-physics Interaction of Coupled Geomechanics and Multi-Phase

Flow Equations
dive(u) — bVp =0

1 0p Oe,(u) k B

o =o(eé€)
@ Approximate the constitutive relation by a neural network
0_n+1 :NJ\/G(UH,Gn) + H€n+1

Fixed Pressure Sensors
p=0 ;
L ®
> <l
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on o0 =0 | Injection Production kq an ~
\\/ No-flow :
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on Finite Volume Cell

Kailai Xu (kailaix@stanford.edu), et al. Physics Constrained Learning

27 / 35



Neural Networks: Inverse Modeling of Viscoelasticity

e We propose the following form for modeling viscosity (assume the
time step size is fixed):

ol — " = NNg(o", €") + H(e"™ — €")

@ H is a free optimizable symmetric positive definite matrix (SPD).
Hence the numerical stiffness matrix is SPD.

@ Implicit linear equation
o,n+1 _ H€n+1 — _He" +NN9(O'",€") +on ZZNNZ(O’”,E”)
@ Linear system to solve in each time step = good balance between

numerical stability and computational cost.

@ Good performance in our numerical examples.
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Training Strategy and Numerical Stability

@ Physics constrained learning = improved numerical stability in
predictive modeling.

@ For simplicity, consider two strategies to train an NN-based
constitutive relation using direct data {(eJ,00)}n

Ac" = HAe" + NNg(c",€"), H >0

@ Training with input-output pairs
mmZ( ntl _ eg+1+/\/'/\/'§(ag,eg))>2
@ Better stability using training on trajectory = physics constrained
learning
mein EH:(J"(H) —ol)?

sit. 1.C. o' = ol and time integrator Ac” = HAe" + N Ng(c", €")
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Experimental Data
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Experimental data from: Javidan, Mohammad Mahdi, and Jinkoo Kim. “Experimental and
numerical Sensitivity Assessment of Viscoelasticity for polymer composite Materials.” Scientific

Reports 10.1 (2020): 1-9.
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Inverse Modeling of Viscoelasticity

@ Comparison with space varying linear elasticity approximation

o = H(x,y)e
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Inverse Modeling of Viscoelasticity

Displacement

Displacement
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Physical Simulation as a Computational Graph

ADCME
Computational Graph

Custom Optimizers Output Custom Operators
CustomOptimizer H customop()
BFGS CUDA J
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A General Approach to Inverse Modeling

\ PoreFlow.jl
/ Geomechanics

Viscoelasticity
Multiphase Flow
Multiphysics

* coming soon

FwiFlow.jl y -
Multiphase Flow .j
https:/ ‘:oglocal/lgiperat;/r; iFlow,jl ‘V/ NNFEM,jl
ups:/fgithub com/lidongzh/EwiFlow) Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl
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