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Inverse Modeling

Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t
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Inverse Modeling for Subsurface Properties

There are many forms of subsurface inverse modeling problems.

The Central Challenge

Can we have a general approach for solving these inverse problems?
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Parameter Inverse Problem

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖2

2.

θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations. Solving for uh may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.
Constitutive relations in solid mechanics.
Turbulent closure relations in fluid mechanics.
Neural-network-based physical properties.
...

The candidate solution space is infinite dimensional.
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Physics Based Machine Learning

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0

Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.
Physics based machine learning: the unknown function is
approximated by a deep neural network, and the physical constraints
are enforced by numerical schemes.
Satisfy the physics to the largest extent.
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Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 (1)

We can now apply a gradient-based optimization method to (1).
The key is to calculate the gradient descent direction gk

θk+1 ← θk − αgk
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.
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Forward Mode vs. Reverse Mode

Reverse mode automatic differentiation evaluates gradients in the
reverse order of forward computation.
Reverse mode automatic differentiation is a more efficient way to
compute gradients of a many-to-one mapping J(α1, α2, α3, α4) ⇒
suitable for minimizing a loss (misfit) function.
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Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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Challenges in AD

Most AD frameworks only deal
with explicit operators, i.e., the
functions with analytical
derivatives that are easy to
implement.

Many scientific computing
algorithms are iterative or
implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ay = x
Nonlinear Implicit F (x , y) = 0
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Implicit Operators in Subsurface Modeling

For reasons such as nonlinearity and stability, implicit operators
(schemes) are almost everywhere in subsurface modeling...

The ultimate solution: design “differentiable” implicit operators.
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Example

Consider a function f : x → y , which is implicitly defined by

F (x , y) = x3 − (y3 + y) = 0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton’s
method and bisection method

y0 ← 0
k ← 0
while |F (x , yk)| > ε do

δk ← F (x , yk)/F ′y (x , yk)

yk+1 ← yk − δk
k ← k + 1

end while
Return yk

l ← −M, r ← M, m← 0
while |F (x ,m)| > ε do

c ← a+b
2

if F (x ,m) > 0 then
a← m

else
b ← m

end if
end while
Return c
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Example

An efficient way is to apply the implicit function theorem. For our
example, F (x , y) = x3 − (y3 + y) = 0, treat y as a function of x and
take the derivative on both sides

3x2 − 3y(x)2y ′(x)− 1 = 0⇒ y ′(x) =
3x2 − 1

3y(x)2

The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume that we solve for uh = Gh(θ) with Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem
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∂θ
+
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Parameter Inverse Problem: Elastic Full Waveform
Inversion for Subsurface Flow Problems
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Fully Nonlinear Implicit Schemes

The governing equation is a nonlinear PDE

∂
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For stability and efficiency, implicit methods are the industrial
standards.
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Inverse Modeling Workflow

Traditionally, the inversion is typically solved by separately inverting the
wave equation (FWI) and the flow transport equations.
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Coupled Inversion vs. Decoupled Inversion

We found that coupled inversion reduces the artifacts from FWI
significantly and yields a substantially better results.
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Travel Time vs. Full Waveforms

We also compared using only travel time (left, Eikonal equation) versus
using full waveforms (right, FWI) for inversion. We found that full
waveforms do contain more information for making a better estimation of
the permeability property.

The Eikonal equation solver was also implemented with physics constrained

learning!
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Check out our package FwiFlow.jl for wave and flow inversion and our
recently published paper for this work.

High Performance

Solves inverse modeling
problems faster with our
GPU-accelerated FWI
module.

Designed for
Subsurface Modeling

Provides many operators
that can be reused for
different subsurface
modeling problems.

Easy to Extend

Allows users to
implement and insert
their own custom
operators and solve new
problems.
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Function Inverse Problem: Modeling Viscoelasticity

Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

divσ(u)− b∇p = 0

1

M

∂p

∂t
+ b

∂εv (u)

∂t
−∇ ·

(
k

Bf µ
∇p
)

= f (x , t)

σ = σ(ε, ε̇)

Approximate the constitutive relation by a neural network

σn+1 = NN θ(σn, εn) + Hεn+1
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Neural Networks: Inverse Modeling of Viscoelasticity

We propose the following form for modeling viscosity (assume the
time step size is fixed):

σn+1 − σn = NN θ(σn, εn) + H(εn+1 − εn)

H is a free optimizable symmetric positive definite matrix (SPD).
Hence the numerical stiffness matrix is SPD.

Implicit linear equation

σn+1 − Hεn+1 = −Hεn +NN θ(σn, εn) + σn := NN ∗θ(σn, εn)

Linear system to solve in each time step ⇒ good balance between
numerical stability and computational cost.

Good performance in our numerical examples.
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Training Strategy and Numerical Stability

Physics constrained learning = improved numerical stability in
predictive modeling.

For simplicity, consider two strategies to train an NN-based
constitutive relation using direct data {(εno , σno)}n

∆σn = H∆εn +NN θ(σn, εn), H � 0

Training with input-output pairs

min
θ

∑
n

(
σn+1
o −

(
Hεn+1

o +NN ∗θ(σno , ε
n
o)
))2

Better stability using training on trajectory = physics constrained
learning

min
θ

∑
n

(σn(θ)− σno)2

s.t. I.C. σ1 = σ1
o and time integrator ∆σn = H∆εn +NN θ(σn, εn)
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Experimental Data

Experimental data from: Javidan, Mohammad Mahdi, and Jinkoo Kim. “Experimental and

numerical Sensitivity Assessment of Viscoelasticity for polymer composite Materials.” Scientific

Reports 10.1 (2020): 1–9.
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Inverse Modeling of Viscoelasticity

Comparison with space varying linear elasticity approximation

σ = H(x , y)ε
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Inverse Modeling of Viscoelasticity
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Physical Simulation as a Computational Graph
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A General Approach to Inverse Modeling
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