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Overview

o Gradients are useful in many applications
e Mathematical Optimization

min f(x)

x€ER"

Using the gradient descent method:
Xp+1 = Xp — @y VF(X,)

e Sensitivity Analysis
f(x + Ax) = f'(x)Ax

e Machine Learning
Training a neural network using automatic differentiation
(back-propagation).
e Solving Nonlinear Equations Solve a nonlinear equation f(x) = 0 using
Newton's method
f(xn)

Xl =X T 00
n
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Terminology

@ Deriving and implementing gradients are a challenging and
all-consuming process.

@ Automatic differentiation: a set of techniques to numerically evaluate
the derivative of a function specified by a computer program
(Wikipedia). It also bears other names such as autodiff, algorithmic
differentiation, computational differentiation, and back-propagation.

@ There are a lot of AD softwares

© TensorFlow and PyTorch: deep learning frameworks in Python

© Adept-2: combined array and automatic differentiation library in C++
© autograd: efficiently derivatives computation of NumPy code.

@ ForwardDiff jl, Zygote.jl: Julia differentiable programming packages

@ This lecture: how to compute gradients using automatic
differentiation (AD)

o Forward mode, reverse mode, and AD for implicit solvers
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AD Software

GMM (1k) [Objective] - Release GMM (1k) Dacobian] - Release

=— Python, Autograd

Julia, Zygote

—— F#, Diffsharp
~ —=— python, Tensorflow (2.0, eager)
= —e—C++, Manual Eigen Ve
€, Tapenade

- —=— C++, Manual Eigen
- —a— Python, Tensorflow (2.0, graph)
_ —=— Python, PyTorch

v

£ ;

https://github.com/microsoft/ADBench
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Finite Differences

f(x+ h) —f(x)

f'(x) ~ - , f(x) = Flxth) —flx—h)

2h

@ Derived from the definition of derivatives

f/(X) — /LTO f(X + h) — f(X)

@ Conceptually simple.

@ Curse of dimensionalties: to compute the gradients of f : R™ — R,
you need at least O(m) function evaluations.

@ Huge numerical error: roundoff error.
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Finite Difference

£ = x -> sin(x)
x0 0.1
e = cos(x0)

println("True derivative: $e")
printstyled("Forward Difference\tError\t\t\tCentral Difference\tError\n", bold=true)

1:10
1/10%1

for i
h

£1 = (£(x0+h)-£(x0))/h

f2
el abs(fl-e)
e2 = abs(f2-e)

(£(x0+h)-£(x0-h))/2h

println("$fl\tsel\tsf2\tse2")

end

True derivative: 0.9950041652780258

Forward Difference
0.9883591414823306
0.9944884190346656
0.994954082739849

0.9949991719489237
0.9950036660946736
0.9950041153644618

2
0.9950041603146165
1
0.9950041651718422
0

0.9950041623962845
0.9950040791295578

Error
0.006645023795695204
0.00051574624336026
5.008253817684327e-5
4.993329102087607e-6
4.991833522094424e-7
4.991356405970038e-8

4.963409350189352e-9

1.0618361745429183e-10

2.8817412900394856e-9

8.614846802590392e-8
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Central Difference
0.9933466539753061
0.9949875819581878
0.995003999444008

0.9950041636197504
0.9950041652613538
0.9950041652759256

0.9950041653106201
0.9950041651718422

0.9950041623962845
0.9950040791295578

AD

Error

0.0016575113027197386
1.6583319838003874e-5
1.6583401785119634e-7
1.6582754058802607e-9
1.667199711619105e-11
2.1002088956834086e-1

3.2594260623852733e-1

1.0618361745429183e-1

2.8817412900394856e-9
8.614846802590392e-8
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Finite Difference

I
_|Round-off error 1
dominant '

Error

- —— Forward difference
- — - Center difference
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Truncation error|
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Baydin, A. G., Pearlmutter, B. A., Radul, A. A, & Siskind, J. M. (2017). Automatic

I I I
107 10° 10®

differentiation in machine learning: a survey. The Journal of Machine Learning Research, 18(1),

5595-5637.
AD
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Symbolic Differentiation

e Symbolic differentiation computes exact derivatives (gradients): there
is no approximation error.

@ It works by recursively applies simple rules to symbols
d d
7€) 2 )

d d d d d d
slutv)=—(u)+(v)  —(w)=v(u)+u_-(v)

Here c is a variable independent of x, and u, v are variables
dependent on x.

@ There may not exist convenient expressions for the analytical
gradients of some functions. For example, a blackbox function from a
third-party library.
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Symbolic Differentiation

@ Symbolic differentiation can lead to complex and redundant
expressions

using SymPy

sigmoid = x -> 1/(l+exp(-x))
x,wl,w2,w3,bl,b2,b3 = @vars x wl w2 w3 bl b2 b3
y = w3*sigmoid(w2*sigmoid(wl*x+bl)+b2)+b3

dwl = diff(y, wl)

wy

—by— -
w2w3xe""_w"‘e 27 hwiny,

R wz 2
(e-rowix 4 1)° (e‘ = 1)

print(dwl)
w2*w3*x*exp(-bl - wl*x)*exp(-b2 - w2/(exp(-bl - wl*x) +

1))/ ((exp(-bl - wl*x) + 1)"2*(exp(-b2 - w2/(exp(-bl - wl¥*
x) + 1)) + 1)°2)
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Automatic Differentiation

@ AD is neither finite difference nor symbolic differentiation.
@ It works by recursively applies simple rules to values

d d

&(c) =0 a(x) =1
d d d d d d
&(UTLV): &(U)TL&(V) E(UV): V&(U)ﬂLUa(V)

Here c is a variable independent of x, and u, v are variables

dependent on x.
@ It evaluates numerically gradients of “function units” using symbolic
differentiation, and chains the computed gradients using the chain rule

f
IEDD _ f1(g())g(x)
o It is efficient (linear in the cost of computing the function itself) and

numerically stable.
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Computational Graph

@ The “language” for automatic differentiation is computational graph.
e The computational graph is a directed acyclic graph (DAG).
o Each edge represents the data: a scalar, a vector, a matrix, or a high
dimensional tensor.
e Each node is a function that consumes several incoming edges and

outputs some values.
J

" /// +
uz = f2(u2, 0), w
(

e — (s, 6). fl\/fz °

@ Let's build a computational graph for computing

z =sin(x1 + x2) + x3x3
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Building a Computational Graph

z=sin(x1 + x) + x3x3
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Building a Computational Graph

z =sin(x; + x2) + x3x3

T
)

gin(I."'y \le,
Y,
B £
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Building a Computational Graph

z =sin(x1 + x2) + x3x3

Z

T Sinx, +xy) + X705

sin(x, +V .erz)@
© .0
Xy + x/ X22/

PN
k3 £
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Computing Gradients from a Computational Graph

@ Automatic differentiation works by propagating gradients in the
computational graph.

@ Two basic modes: forward-mode and backward-mode. Forward-mode
propagates gradients in the same direction as forward computation.
Backward-mode propagates gradients in the reverse direction of
forward computation.

07 ow ow 07

z ox w ox 0z 0x
""" et ellalaliale il allalalialiel <ttt
€= €= <« = €= €= €=

dy _ dy ow dy
0z ow 0z ow
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Computing Gradients from a Computational Graph

o Different computational graph topologies call for different modes of
automatic differentiation.

e One-to-many: forward-propagation=-forward-mode AD.

Output 1

/: Output 2

. —:O—:O—:O—:O—:O—: Output 3

§ Output 4

Output 5

e Many-to-one: back-propagation=-reverse-mode AD.

. D

B—0+—="0—=0—=0—=0+—=

B
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Automatic Differentiation: Forward Mode AD

@ The forward-mode automatic differentiation uses the chain rule to
propagate the gradients.

01980 _ g0 ()

@ Compute in the same order as function evaluation.
@ Each node in the computational graph

o Aggregate all the gradients from up-streams.
e Forward the gradient to down-stream nodes.

- R
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Example: Forward Mode AD

@ Let's consider a specific way for computing

X4

f(x) = |x? +sin(x)
—sin(x)
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Example: Forward Mode AD

@ Let's consider a specific way for computing

X
f(x) = {xz + sin(x)]

—sin(x)

Ny 2
y3=)’12 Ya=Yt+tY Ys=—2 (v1,51) = (x%,2x)
! f ! (¥2,¥3) = (sin x, cos x)

O O O
_\20/ \O/= |
V=X \ / Y2
x
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Example: Forward Mode AD

@ Let's consider a specific way for computing

X4

f(x) = |x? +sin(x)
—sin(x)

y3=)’12 Ya=Yt+tY Ys=—2 (v1,71) = (X 2x)
! f f (¥2,¥3) = (sin x, cos x)

O O e
Y _>O/ \O/yzv—smx (s, y3) = (y1,2y1y1) (X 4X)

N
El
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Example: Forward Mode AD

@ Let's consider a specific way for computing

f(x) = |x? +sin(x)
—sin(x)
¥ =y12 Ya=y1+Y Ys=—2 (YLY:D = (X2 2x)
! 1 ! (v2,¥5) = (sin x, cos x)
@) @) O
'\2 / \ / ) (}/3,)/3) (Y172)/1Y1) (X 4X )
n=x0Q O 2z =sinx (yasya) = 1 +yi, 01 + y2)

N
El

CME 216 AD

= (x® + sin x, 2x + cos x)
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Example: Forward Mode AD

@ Let's consider a specific way for computing

X
f(x) = |x?+sin(x)
—sin(x)

¥ =y12 Ya=y1+Y Ys=—2 (YLY:D = (X2 2x)

I 1 ! (v2,¥5) = (sin x, cos x)

@) @) O

'\2 / \ / . sys) = (vf: 2yn) = (x*,4x°)
n=s O‘\ /'O 2EIE (v, v) = (1 +y1v1 + )

. = (x® + sinx, 2x + cos x)
()/57}’5) = (—y2, —y2) = (—sinx, — cos x)

CME 216 AD
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Summary

@ Forward mode AD reuses gradients from upstreams. Therefore, this
mode is useful for few-to-many mappings

fF-R"R" n<m

@ Applications: sensitivity analysis, uncertainty quantification, etc.

o Consider a physical model f : R” — R™, let x € R" be the quantity of
interest (usually a low dimensional physical parameter), uncertainty
propagation method computes the perturbation of the model output
(usually a large dimensional quantity, i.e., m > 1)

f(x + Ax) =~ f(x) + f'(x)Ax
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Reverse Mode AD

T _ (g ()
@ Computing in the reverse order of forward computation.
@ Each node in the computational graph

o Aggregates all the gradients from down-streams
o Back-propagates the gradient to upstream nodes.

aJ ow
— ow ox
- W
N 7,
— O

\E

w

y‘/vf
Z
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Example: Reverse Mode AD

z = sin(xg + x2) + x3x3

z = sin(x, +x,) + x3x3

O Y4 = X3x
7N
7 o/
2N,
£ £

CME 216 AD 25 /47

¥y = sin(x; +x,)



Example: Reverse Mode AD

z = sin(xg + x2) + x3x3
7 = sin(y, +x,) +xdx;

T Podz i
v = sin(x; +x,) v ooz
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Example: Reverse Mode AD

z =sin(x1 + x2) + x3x3

2= sinx, + x,) + x2x;

ooz
J;3_= sinfx; + x,) T v f}_’ = 5
o .

dyy

n=xtx

oz )
= cos(y 4
ay, ; ’-"
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Example: Reverse Mode AD

z = sin(xg + x2) + x3x3

. 2
Z = 8in(x; +x,) +x5%3

T Podz
vy = sin(x; + x,) Y oz
dz

Yy =x+x B
az

=cos(y)/
9y »

— =cos(y,)

. =
dx, 0xy I &
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Summary

@ Reverse mode AD reuses gradients from down-streams. Therefore,
this mode is useful for many-to-few mappings

fF:R"—R™" n>m

o Typical application:
o Deep learning: n = total number of weights and biases of the neural
network, m = 1 (loss function).
o Mathematical optimization: usually there are only a single objective
function.
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Summary

@ In general, for a function f : R” — R"™

Mode Suitable for ... Complexity! Application
Forward m > n <250PS(f(x)) UQ
Reverse m<n < 4 OPS(f(x)) Inverse Modeling

@ There are also many other interesting topics
o Mixed mode AD: many-to-many mappings.
e Computing sparse Jacobian matrices using AD by exploiting sparse
structures.
Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

LOPS is a metric for complexity in terms of fused-multiply adds.
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The Demand for Gradients in Physical Simulation

Model
Forward Problem
f(x)
‘ - it Model Prediction
lodel | —» | Physical Laws| —» of
A Parameters
Prob. n A Prob. /\ Observations.
\ \
‘ JV
LA J
Inverse Problem
Estimation
Physical Laws| —> of
Parameters

|

Prob.
SN | ossortons|—

Model prediction

Prob.

@ Solving nonlinear equations
@ Uncertainty quantification/sensitivity analysis

@ Inverse problems

Image source:
https://mirams.wordpress.com/2016/11/23/uncertainty-in-risk-prediction/,
http://fourier.eng.hmc.edu/el176/lectures/ch2/node5.html
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Inverse Problem and Mathematical Optimization

e Consider a bar under heating with a source term f(x, t). The right
hand side has fixed temperature and the left hand side is insulated.

@ The governing equation for the temperature u(x, t) is

&Ig:t) = k(x)Au(x, t) + f(x,t), te€(0,T),xeQ
u(l,t)=0 t>0
m(O)aug))gt) =0 t>0

@ The diffusivity coefficient is given by
k(x) = a+ bx

where a and b are unknown parameters.
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Inverse Problem and Mathematical Optimization

@ Goal: calibrate a and b from up(t) = u(0, t)

k(x) = a+ bx

ou(x, t)

= k(x)Au(x, 1) + f(x, 1)

au(O )

o / ¢ ull) =0

k(0)
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Inverse Problem and Mathematical Optimization

@ This problem is a standard inverse problem. We can formulate the
problem as a PDE-constrained optimization problem

min /Ot(u(o, t) — uo(t))?dt

a,b
Oulx, t) = k(x)Au(x, t) + f(x,t), t€(0,T),xe(0,1)

ot
ou(0,t)
_H(O)T_07t>0

u(l,t)=0,t>0
u(x,0) =0,x € [0,1]
k(x)=ax+b

s.t.
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Numerical Partial Differential Equation

@ As with many physical modeling techniques, we discretize the PDE
using numerical schemes. Here is a finite difference scheme for the
PDE k=1,2,....m,i=1,2,...,n

UKL K uHL 4 gkl gyt
i i py H—l i + fk—i—l
At ' Ax? !
For initial and boundary conditions,
k=m+1
we have
M,'l:+|l uIIH»l uik:»ll
k k k+1
iy 2~ _ g . uf
2Ax
k
Unt1 = 0 k=1
uO _ 01 2 3 i nontl

1
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Numerical Partial Differential Equation

@ Rewriting the equation as a linear system, we have

A(a, b) UKL = Uk 4 FKHL

Here \; = —ﬁ;% and

i +1 —2\1
-2 20+ 1 -2
—A3 223+1  —X3

CME 216 AD

Uk =

_)\nfl

2Xp + 1]

F= At

k+1
f
fk+1

fk+1
n
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Computational Graph for Numerical Schemes

@ The discretized optimization problem is

min (u¥ — up((k — 1)At))?

a
k=

st. A(a, )UK = UK FFL k=12,....m
U0 =

@ The computational graph for the forward computation (evaluating the
loss function) is
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Implementation using an AD system

function condition(i, u_arr) 2 -
i<mmel Simulation Loop

end

function body(i, u_arr)
u = read(u_arr, i-1)
rhs = u + F[i]
u_next = A\rhs
u_arr = write(u_arr, i, u_next)
i1, u_arr
end You will have chance to
R Practice in your homework!
u_arr = TensorArray(mt1) (TensorFlow/PyTorch, ADCME,
u_arr = write(u_arr, 1, zeros(n))
i = constant(2, dtype=Int32) or any Other AD tOOIS)
_+ u = while loop(condition, body, [i, u_arr])
u = set_shape(stack(u), (m+l, n))

uc readdlm("data.txt")[:]
Formulate
Loss Function

loss = sum((uc-u[:,1])"2) * 1lel0

sess = Session(); init(sess)
BFGS! (sess, loss)
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Challenges in AD

@ Most AD frameworks only deal

with explicit operators, i.e., the
functions that has analytical
derivatives, or composition of

these functions.

@ Many scientific computing
algorithms are iterative or

implicit in nature.

‘_ﬂxpﬁxo/’C?R\ (:::>

T; I
J e

Explicit Operator Implicit Operator

Linear/Nonlinear

Explicit/Implicit  Expression

Linear Explicit y = Ax

Nonlinear Explicit y = F(x)

Linear Implicit Ay = x

Nonlinear Implicit F(x,y)=0
AD

F(,x1, %5, %3) = 0
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Example

@ Consider a function f : x — y, which is implicitly defined by

Fix,y)=x>*—(y*+y)=0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton's

method and bisection method

y0 0

k<« 20

while |F(x, y*)| > ¢ do
85— F(x,y%)/F)(x, y*)
YRk gk
k+— k+1

end while

Return y*

CME 216

AD

[« —M, r< M m+20
while |F(x, m)| > ¢ do
c« b
if F(x, m)> 0 then
a<m
else
b+ m
end if
end while

Return ¢
42/47



Example

@ An efficient way is to apply the implicit function theorem. For our
example, F(x,y) = x3 — (y3 4+ y) = 0, treat y as a function of x and
take the derivative on both sides

3~ 3y(x)2y/(x) =1 = 0 = y/(x) = 22
3y(x)?

The above gradient is exact.
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Implicit Operators in Physical Modeling

@ Return to our bar problem, what if the material property is complex
and has a temperature-dependent governing equation?

du(x, t)

5 = WAl ) +f(x1), te(0,T)xeQ

@ An implicit scheme is usually a nonlinear equation, and requires an
iterative solver (e.g., the Newton-Raphson algorithm) to solve

k+1 ok ylrt gk k+1
u Tt g UG T 2y fht1
L T - o

i

@ Typical AD frameworks cannot handle this operator. We need to
differentiate through implicit operators.

@ This topic will be covered in a future lecture: physics constrained
learning.
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Conclusion

@ What's covered in this lecture

Reverse mode automatic differentiation;
Forward mode automatic differentiation;
Using AD to solver inverse problems in physical modeling;

o
o
o
o Automatic differentiation through implicit operators.
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What's Next

@ Physics constrained learning: inverse modeling using automatic
differentiation through implicit operators;

@ Neural networks and numerical schemes: substitute the unknown
component in a physical system with a neural network and learn the
neural network with AD:;

@ Implementation of inverse modeling algorithms in ADCME.
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