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https://github.com/kailaix/ADCME.jl

This work (ADCME_jl and its ecosystem) is a result of collective efforts of
many of my Ph.D. collaborators together with our faculty advisors. In
chronological order they are:
@ Ph.D. collaborators: Daniel (Zhengyu) Huang, Dongzhuo Li,
Weiqiang Zhu, and Tiffany (Li) Fan.
@ Faculty supervisors: Eric Darve, Charbel Farhat, Jerry M. Harris, and
Gregory C. Beroza.

@ Many other fellow researchers from Julia language and scientific
computing communities, who provide valuable inputs.
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Inverse Modeling

o Inverse modeling (JE@*E) identifies a certain set of parameters or
functions with which the outputs of the forward analysis matches the
desired result or measurement.

@ Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

mein Lp(up) st Fp(8,up) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation uops, €.g., Lp(up) = ||up — tobsl|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fp(6, up) = 0 are described by a system of
partial differential equations. Solving for up may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

mfin Lp(up) st. Fp(foup) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.
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Physics Based Machine Learning

Inain Lh(uh) s.t. Fh(NNg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Physics based machine learning: the unknown function is
approximated by a deep neural network, and the physical constraints
are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.
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Gradient Based Optimization

mein Lp(up) st Fp(6,up) =0 (1)

@ We can now apply a gradient-based optimization method to (1).
@ The key is to calculate the gradient descent direction g*
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.
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Computational Graph for Numerical Schemes

@ To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the "AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.
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ADCME: Computational-Graph-based Numerical
Simulation

ADCME
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Automatic Differentiation: Forward-mode and
Reverse-mode
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What is the Appropriate Model for Inverse Problems?

@ In general, for a function f : R” — R™

Mode Suitable for ... Complexity® Application
Forward m > n < 2.5 0PS(f(x)) UQ
Reverse m<n <4 OPS(f(x) Inverse Modeling

@ There are also many other interesting topics

e Mixed mode AD: many-to-many mappings.
o Computing sparse Jacobian matrices using AD by exploiting sparse
structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

LOPS is a metric for complexity in terms of fused-multiply adds.
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Challenges in AD

@ Most AD frameworks only deal T I
with explicit operators, i.e., the st © @ R
functions that has analytical FSN
derivatives, or composition of T / T \
these functions. e
@ Many scientific computing Explicit Operator  Impicit Operator

algorithms are iterative or
implicit in nature = Physics
Constrained Learning (PCL)

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F(x)
Linear Implicit Ay = x
Nonlinear Implicit F(x,y)=0
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Example

@ Consider a function f : x — y, which is implicitly defined by
Flx,y)=x" = (y’ +y) =0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton's
method and bisection method

y0<_0 [ < —M, r< M m<+20
k<0 while |F(x, m)| > € do
while |F(x, y¥)| > ¢ do ¢ b
6k(—F(X’yk)/F)//(X,yk) if F(X,m) > 0 then
yk+1<_yk_5k a<+<—m
k—k+1 else
end while b m
Return y* end if
end while
Return ¢
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Example

@ An efficient way to do automatic differentiation is to apply the implicit
function theorem. For our example, F(x,y) = x3 — (y3 +y) = 0;
treat y as a function of x and take the derivative on both sides

3x2
3y2 +1

3x* = 3y(x)?y'(x) =y (x) =0 = y'(x) =
The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning

Hbin Lp(up) st Fp(0,up) =0

@ Assume that we solve for up = Gp(6) with Fp(6, up) = 0, and then

Lp(0) = La(Gh(0))

@ Applying the implicit function theorem

OFn(®, up) | OFn(0,un) OG(0) _ o 9Gh(0) _ 7(8Fh(0, Uh))*lth(G’, Up)

a0 dup, a0 90 dup 29
o Finally we have
OLy() _ OLn(up) 9Gh(6) _  OLn(un) <th(9,uh) )71 OF (0, up)
00 dup, 00 dup, Ouy, up=Gp(0) 00 up=Gp(0)
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Scientific Machine Learning Inverse Modeling Toolkit

ADCME | %

High Performance Easy to Use Broad Applicability

Solves large-scale prob- Provides high-level syn- Constructs multiple

lems with TensorFlow tax, which is compati- physical models using

backend and MPI-based ble with Julia syntax, for toolkits from ADCME

distributed optimization implementing numerical ecosystem and extends

for scientific computing. schemes. capabilities by custom
operators.
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ADCME Architecture

_ <4— High Level API for Inverse Modeling

Python TensorFlow

¢ Provides Kernels and
Computational Graph Tools

- - -4— Compatible with Computing Environment

Targeting at scientific computing:
@ Sparse linear algebra;
@ MPI-based distributed computing;

@ Domain specific numerical schemes: seismic inversion (ADSeismic.jl),
fluid dynamics (FwiFlow.jl), geomechanics (PoreFlow.jl), solid
mechanics (NNFEM.jl), ...
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Distributed Optimization

o ADCME also supports MPI-based distributed computing. The parallel
model is designed specially for scientific computing.
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Estimating Coefficients from Data using ADCME

—bu"(x) + u(x) = f(x), xe€[0,1], wu(0)=u(1)=0
f(x) =8+ 4x — 4x2

e Data: u(0.5) =1
o Finite difference:

Uiyl + U1 —2

—b 12

Yy = f(x)
Bu=f

@ Compute u; as a function of b;
@ Minimize (ux — u(0.5))?, here x, = 0.5.
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Estimating Coefficients from Data using ADCME

using LinearAlgebra
using ADCME

n = 101 # number of grid nodes in [0,1]
h =1/(n-1)
X = LinRange(0,1,n)[2:end-1]
b = Variable(10.0)
A = diagm(0=>2/h"2*xones(n-2),
-1=>-1/h"2*xones(n-3), 1l=>-1/h"2xones(n-3))
B=DbxA+ I #1I stands for the identity matrix
f =@. 4%¥(2 + X - xX*2)
u = B\f # solve the equation using built-in linear solver
ue = u[div(n+1,2)] # extract values at x=0.5
loss = (ue-1.0)"2

# Optimization
sess = Session(); init(sess)
BFGS! (sess, loss)
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Domain Specific Numerical Schemes

-V - (kVu) = f, ulpga =0

/mVu-VvdX:/ fvdx
Q Q

The variational problem is transcribed into numerical simulation using
domain specific implementations from PoreFlow.jl:

o Weak form

A = constant(compute_fem_laplace_matrixl(kappa, m, n, h))
F eval_f_on_gauss_pts(f, m, n, h)

bd = bcnode("all", m, n, h)
A, _ = fem_impose_Dirichlet_boundary_conditionl(A, bd,
m, n, h)

rhs = compute_fem_source_terml(F, m, n, h)
rhs[bd] .= 0.0

sol = A\rhs
ADCME Physics Based Machine Learning

25 / 45



A General Approach to Inverse Modeling

" pata " 'Deep Neural Networks | pnrerlnw

. 3 H
l[[[=_ U rr__r”"ﬁ—,ﬁ' PoreFlow.jl
- - / Geomechanics
Viscoelasticity
H Multiphase Flow
Multiphysics

* coming soon

FwiFlow.jl 4 -

Multiphase Flow .j
Nonlocal Operators Nv .
hitps://github.com/lidongzh/FwiFlowjl NNFEM.jl

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl
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ADSeismic.jl: A General Approach to Seismic Inversion

@ Many seismic inversion problems can be solved within a unified
framework.
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ADSeismic.jl: Earthquake Location Example

@ The earthquake source function is parameterized by (g(t) and xp are

unknowns)
) = £ o llx =l
X ) = _—5&Xp| —————5—
?
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ADSeismic.jl: Benchmark

o ADCME makes the heterogeneous computation capability of
TensorFlow available for scientific computing.
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NNFWI: Neural-network-based Full-Waveform Inversion

o Estimate velocity models from seismic observations.
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NNFWI: Neural-network-based Full-Waveform Inversion

@ Inversion results with a noise level o = oy

Emis
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Constitutive Modeling
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NNFEM.jl: Constitutive Modeling

oijj +p bi =p U
stress  external force velocity
(2)
1
ej = 5w+ uiy)
—~
strain

o Observable: external/body force b;, displacements u; (strains ej; can
be computed from u;); density p is known.

@ Unobservable: stress o;.

@ Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress = My(strain, . ..) ‘ (3)

and the neural network is trained by coupling (1) and (2).
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NNFEM.jl: Robust Constitutive Modeling

@ Proper form of constitutive relation is crucial for numerical stability

Elasticity = o = Cype

o= Moy(e) (Static)
o™ = Lg(e")Lg (") T (" — €") + 6"  (Dynamic)

Elaso-Plasticity = 6™ = Lo(e"", €”,0")Lo(e" ', €",0") ("' — €") + o"

Hyperelasticity = {

Liinn

Lao11  Laoao

L3311 L3322 L3333
Lg =

L2323
L1313
Li212

@ Weak convexity: Lgl_;— >0

e Time consistency: ™! — " when ™! — €”
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NNFEM.jl: Robust Constitutive Modeling

@ Weak form of balance equations of linear momentum

P,(O):/pu,éu,th—i—/aU(O)éaUdV
v VSN~~~

embedded neural network

F,-:/pb,-&u,-dV—k/ tidu;dS
1 oV

@ Train the neural network by

N

L(0) = min > (P;(0) - Fi)?

i=1

The gradient VL(#) is computed via automatic differentiation.

Lf 1 L Ll{ 1
: : '
i
| R \ f - bl ' fitl Pl .

'
! '
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'
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NNFEM.jl: Robust Constituti
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NNFEM.jl: Robust Constitutive Modeling

@ Comparison of different neural network architectures
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PoreFlow.jl: FEM/FVM on Structured Grids

@ Steady-state Navier-Stokes equation
1
(u-Vi3u=—--Vp+V:(vVu)+g
p
V-u=0

@ Inverse problem are ubiquitous in fluid dynamics:

[E]: Left: electronic cooling; right: nasal drug delivery.
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PoreFlow.jl: FEM/FVM on Structure Grids
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PoreFlow.jl: FEM/FVM on Structure Grids

e Data: (u,v)

e Unknown: v(x) (represented by a deep neural network)
@ Prediction: p (absent in the training data)
@ The DNN provides regularization, which generalizes the estimation

better!
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@ Some Perspectives
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A Parameter/Function Learning View of Inverse Modeling

@ Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

V- (0Vu(x)) =0 BC(u(x))=0 (4)
We observe some quantities depending on the solution v and want to
estimate 0.
Expression Description ADCME Solution Note
V - (cVu(x)) =0 Parameter Inverse Problem Dsistca;itiﬂtggzigt Cﬂl]z iﬁ:o?;ﬂiﬂ::j;;f
V- (f(x)Vu(x)) =0 Function Inverse Problem Func’t\liz:r;;IANpe:ngiator f(x) = fw(x)
V- (f(u)Vu(x)) =0 Relation Inverse Problem Physicieéi(()j:satlr:iiil;lnilr_]egarning f(u) = fy(u)
V- (wVu(x)) =0 Stochastic Inverse Problem Generative Neural Networks @ = fuw (Viatent)
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Scopes, Challenges, and Future Work

Physics based Machine Learning: an innovative approach to inverse
modeling.

@ Deep neural networks provide a novel function approximator that outperforms traditional
basis functions in certain scenarios.

@ Numerical PDEs are not on the opposite side of machine learning. By expressing the
known physical constraints using numerical schemes and approximating the unknown with
machine learning models, we combine the best of the two worlds, leading to efficient and
accurate inverse modeling tools.

Automatic Differentiation: the core technique of physics based machine
learning.
@ The AD technique is not new; it has existed for several decades and many software exists.

The advent of deep learning drives the development of robust, scalable and flexible AD
software that leverages the high performance computing environment.

© As deep learning techniques continue to grow, crafting the tool to incorporate machine
learning and AD techniques for inverse modeling is beneficial in scientific computing.

However, AD is not a panacea. Many scientific computing algorithms cannot be directly
expressed by composition of differentiable operators.
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A General Approach to Inverse Modeling

" pata " 'Deep Neural Networks | pnrerlnw
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H Multiphase Flow
Multiphysics

* coming soon

FwiFlow.jl 4 -

Multiphase Flow .j
Nonlocal Operators Nv .
hitps://github.com/lidongzh/FwiFlowjl NNFEM.jl

Constitutive Law Modeling
ADSeismic.jl Hyperelasticity
General Seismic Inversion Elasto-Plasticity

https://github.com/kailaix/ADSeismic.jl https://github.com/kailaix/NNFEM jl
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