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Inverse Modeling

o Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

@ Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t
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Inverse Modeling
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

mein Lp(up) st Fp(0,up) =0

@ The loss function L, measures the discrepancy between the prediction
up and the observation uops, €.g., Ly(up) = ||up — tobsl|3-

@ 0 is the model parameter to be calibrated.

@ The physics constraints Fx(6, up) = 0 are described by a system of
partial differential equations. Solving for u, may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

mfin Lp(up)  st. Fp(f,up) =0

What if the unknown is a function instead of a set of parameters?
@ Koopman operator in dynamical systems.
o Constitutive relations in solid mechanics.
@ Turbulent closure relations in fluid mechanics.
o ...

The candidate solution space is infinite dimensional.
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Physics Based Machine Learning

m@in Lh(Uh) s.t. Fh(NNg, uh) =0

@ Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.

@ Physics based machine learning: the unknown function is
approximated by a deep neural network, and the physical constraints
are enforced by numerical schemes.

@ Satisfy the physics to the largest extent.
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Gradient Based Optimization

mein Lh(uh) s.t. Fh(9, uh) =0 (1)

e We can now apply a gradient-based optimization method to (1).
@ The key is to calculate the gradient descent direction g¥
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© Automatic Differentiation
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

@ Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Neural Network Layers
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Automatic Differentiation: Computational Graph

@ A computational graph is a functional description of the required
computation. In the computational graph, an edge represents data,
such as a scalar, a vector, a matrix or a tensor. A node represents a
function (operator) whose input arguments are the the incoming
edges and output values are are the outcoming edges.

e How to build a computational graph for z = sin(x; + x2) + x3x37?

T : T sin(x; +x,) + x:z,n

i QO : e D

O : O :
S S B
m =
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Automatic Differentiation: Reverse-Mode

@ The reverse-mode automatic differentiation relies on the chain rule

Of og(x)  0f' o g(x)dg’'(x)
ox N og ox

@ The reverse-mode automatic differentiation stores all intermediate

variables in the forward computation.

o Let's see how to compute 92, i = 1,2,3 for z = sin(x1 + x2) + x3x3
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Automatic Differentiation: Forward-Mode

@ The forward-mode automatic differentiation also uses the chain rule
to propagate the gradients.

Of og(x)  0f' o g(x)dg’'(x)
ox N og 0x

@ In the forward-mode automatic differentiation, at every stage we
evaluate the operator as well as its gradient.

V=Y =Yty Ys=—0 (v1,51) = (x*,2x)
! f f (¥2,¥2) = (sin x, cos x)

@) @) @)
y1—>0/ \O/y;—snx (y3.v4) = (7, 2ny1) = (x*,4x°)

(
(vaya) = (y1 + y1.y1 + ¥2)

= (x® + sin x, 2x + cos x)

(YS7YE,,) = (—y2, —yﬁ) = (—sinx, —cos x)
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Automatic Differentiation: Comparison

@ In general, for a function f : R” — R™

Mode Suitable for ... Complexity! Application
Forward m > n <25 0PS(f(x)) UQ
Reverse m<n <4 OPS(f(x) Inverse Modeling

Margossian CC. A review of automatic differentiation and its efficient implementation.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019
Jul;9(4):e1305.

YOPS is a metric for complexity in terms of fused-multiply adds.
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Computational Graph for Numerical Schemes

o To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “"AD language”: computational
graph.

@ No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

ntl _ gn k1 i\ g = (o 25D
DS =S = V- (my(SEHK VL) At = o+ ai s )
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

Consider a concrete PDE-constrained optimization problem:

min J = f4(u1, u2, u3, ug),
U1,9

s.t. up = f1(uy, 0), J

uz = fH(uy, 9), Of4

us = f3(u3, 0). /// \u4

— f1, >, f3 are PDE constraints .
— f4 is the loss function f] \ /fz f3

— uy is the initial condition
— 0 is the model parameter
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

Solving the constrained optimization method using adjoint-state methods:
@ The Lagrange multiplier is
J = fa(ur,uz,u3,us) + A3 (A (u1,0) —u2) + AJ (f2(u2, 0) —uz) + AJ ((u3, 0) — us)

@ Therefore, the first order KKT condition of the constrained PDE

system is
of;
A = aTi
g—g = A;% + A ?922 + )\Igg = SenS|t|V|ty
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

How do we implement reverse-mode automatic differentiation for
computing the gradients?

o Consider the operator f,, we need to implement two operators

Forward: uz = f>(uz, 0)
oJ oJ oJtot
Backward: ——, 2= — p, [ &2
ackward Dus’ 99 by ( 03 ,UQ,G)

_agl:zt is the “total” gradient us received from the downstream in the

computational graph.
@ The backward operator is implemented using the chain rule
oJ aJwt o oJ aJtt of;
8”2 B BU3 OUQ 00 N 8U3 00
What are g—uJQ, %, and ‘95;? exactly?
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

The total gradient uy received is

0J _0fi 0 _ O 0J 0f
OUQ N OUQ aUQ N 8”2 3U3 GUQ

The dual constraint in the KKT con-
dition

ot

O
fl(y\ /fz 5
AT _ aﬁ‘ A af.—2 r)u2
2= 8u 3 Ju, Ouy
The following equahty can be verified
aJtot
A =
! 8u,~

In general, the reverse-mode AD is back-propagating the Lagrange
multiplier (adjoint variables).
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

@ The well-established adjoint-state method is equivalent to solving the
KKT system.

@ The adjoint-state methods are challenging to implement, mainly due
to the time-consuming and difficult process of deriving the gradients
in a complex system.

@ Using reverse-mode automatic differentiation is equivalent to solving
the inverse modeling problem using discrete adjoint-state methods,
but in a more manageable way.

o Computational graph based implementation also allows for automatic
compilation time optimization and parallelization.
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© Physics Constrained Learning
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Challenges in AD

@ Most AD frameworks only deal T I
with explicit operators, i.e., the st O @ Fort =0
functions that has analytical FSN
derivatives, or composition of T / T \

these functions.

o Ma ny SC|entif|C com puting Explicit Operator Implicit Operator
algorithms are iterative or
implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F(x)
Linear Implicit Ax =y
Nonlinear Implicit F(x,y)=0
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Example

o Consider a function f : x — y, which is implicitly defined by
Fx.y)=x*=(y*+y)=0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton's
method and bisection method

y0<_0 [« —M, r< M m+20
k0 while |F(x, m)| > ¢ do
while |F(x, y¥)| > ¢ do c+ b
(5k%F(X,yk)/F}l,(X,yk) if F(X,m)>0then
YRl kg a+m
k—k+1 else
end while b m
Return y* end if
end while
Return ¢
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Example

@ An efficient way is to apply the implicit function theorem. For our
example, F(x,y) = x3 — (y3 4+ y) = 0, treat y as a function of x and
take the derivative on both sides

3x2 -1
3y(x)?

3~ 3y(x)PY(x) ~ 1= 0= y/(x) =

The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning
mein Lp(up) st. Fp(0,up) =0

@ Assume in the forward computation, we solve for u, = Gx(0) in
Fn(6, up) =0, and then

Ln(0) = Ln(Gh(0))

@ Applying the implicit function theorem

OFn(0, up) | OFn(0,un) 0G(6) _ o 9Gh(0) _ 7(8Fh(97 Uh)>*1 OFp(0, up)
o0 Oup, o7} o0 dup, o0
o Finally we have
OLn() _ OLn(up) 9Gh(6) _  OLn(un) <8Fh(9:Uh) >*1 OFh (9, un)
00 dup, a0 dup, dup, up=Gp(0) 00 up=Gp(0)
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Physics Constrained Learning

)_1 th(07 Uh)
up=Gp(6) 00

OLn(0) _  OLn(up) (th(e,uh)

00 o 8Uh 8Uh

up=Gp(0)

Step 1: Calculate w by solving a linear system (never invert the matrix!)

o7 Ol (OFy
ouy, Oup, lup=G,(0)
N—— NxN
IxXN

Step 2: Calculate the gradient by automatic differentiation

W7 OFh _ O(wT Fy(0, un))
00 u,=G,(6) 00
N——— up=Gp(0)
Nxp

ADCME Physics Based Machine Learning 26 / 50



Physics Constrained Learning: Linear System

@ Many physical simulations require solving a linear system
A(02)up = 61
@ The corresponding PDE constraint in our formulation is
Fn(61,02,up) = 61 — A(O2)up =0
@ The backpropagation formula

_ OLp(61.62) _ OLp(up)

- A -1
06, dup, (02)
L 8[/—,(01,92) . 8Lh(uh) 1 8A(92)
T 98,  ou, A(02) 06,

which is equivalent to

OLp(up)\ " DA(0,)
T .T h\Uh _
A p= ( 8uh ) 9=-p 802
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Methodology Summary

Neural Kernel Physical Random
Network Functions Parameters = Variables

Update
Model Parameters|
)

T — Optimizer

Calculate
Gradients

[ - Automatic Difterentation
PDE — 1 tg
( | Physios Constrained Learning

Loss Function
-

Predicted Observed
Data Data

T

Initial and
Boundary Conditions
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@ Applications
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ADSeismic.jl: A General Approach to Seismic Inversion

@ Many seismic inversion problems can be solved within a unified
framework.

i«4--- Backpropagation

: . Acoustic : .
Inversion Quantities 3 » Forward Computation |
Pu 5 LT '
W =V -(c"Vu)+f
Velocity Model . Observations
Elastic
: o,
Earthquake location < 971 =05+ 0f; < 7
and > it —_—
source time function do;

e W+ p O+ v

Earthquake rupture "
imaging .

0., U,
7

«
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ADSeismic.jl: Earthquake Location Example
@ The earthquake source function is parameterized by (g(t) and xp are

unknowns) ) | "
X — X0
f(x,t) = o2 &P (—7202 )

Iter=280 — True source time function

Iter=180
0.8

0.6

N

Iter=140
0.4

Z (km)

Iter=100 Iter=8

Amplitude
w

0.2

0.0 \ / *  Seismic stations
True earhquake location

# Initial guess

IS
*

-0.2

-0.4
00 02 04 06 08 10 12 14 0 2 4 6 8
Time (s) X (km)
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ADSeismic.jl: Benchmark

o ADCME makes the heterogeneous computation capability of
TensorFlow available for scientific computing.

50 175
150
40
= 125
E 30 _5,3 100
o P
E 20 E s
50
10 2
o 0 x
00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35
Number of grids (Nx x Ny) 1le5 Number of grids (Nx x Ny) 1e5
(a) (b)
Sum —
T GPU:0 \‘ GPUL
Optimizer
Gradients Gradients
* *
Loss Loss
CPU t t
Model Model
(c)
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NNFEM.jl: Constitutive Modeling

oijj +p b; =p U
~—~ ~~ ~~
stress  external force velocity
(2)
ej = 5(uji+ uij)
—~—
strain

o Observable: external/body force b;, displacements u; (strains ej; can
be computed from u;); density p is known.

@ Unobservable: stress 0.

o Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress = My(strain, .. .) ‘ (3)

and the neural network is trained by coupling (1) and (2).
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NNFEM.jl: Robustic Constitutive Modeling

@ Proper form of constitutive relation is crucial for numerical stability

Elasticity = o = Cye

o = My(e) (Static)

o'l = L9(6n+1)L9(6n+1)T(En+l _ 6”) +o" (DynamiC)

Elaso-Plasticity = o""" = Lo(e"',€",6")Lo(e" ", €",6") (" — €") + &

Hyperelasticity = {

Ly
Loo11 Loz
Lo — L33z L33z Lass3
L2323
L1313

Lio1z
o Weak convexity: Lgl_;— >0

e Time consistency: ™! — " when ™! — €”
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NNFEM.jl: Robustic Constitutive Modeling

@ Weak form of balance equations of linear momentum

P,‘(Q):/pil','(su,'d\/t-l—/UU(e)(Sé‘,jd\/
v VS~~~

embedded neural network
Fi —/pb5u,dV+/ tidu;dS
av

@ Train the neural network by

N
L(6) = min > (Pi(0) -
i=1

The gradient VL(#) is computed via automatic differentiation.

E/‘—l L L”l
A A A
' ' '
f:—l SR , fi SR , f’*l P
-------- > P e P
' ' |

'

b b .

———— e My(ei !, €2, gi2) ﬁ-; Mo(e €= a.'-l) '—I:_. Mo(€1, €', o) IrT’
o

Q
L
"—»
L
-
q
— ]
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ADCME

« Calibrated
Reference

NNFEM.jl: Robustic Constitutive Modeling

« Calibrated
Reference

Piecewise Linear

RBF-0.1, training
RBF-0.1, test

10!
RBF-0.4, training
g 10° RBF-1.0, training
RBF-1.0, test
10! RBF-2.0, training
RBF-2.0, test
NN, training
10-2 NN, test

I‘] 0.2 ll:»l 0:6 Q‘K l li2 l.il
Iteration 104
Radial Basis Functions
vs.
Neural Network

Neural Network

--- RBFN-100, training
— RBFN-100, test

--- RBFN-400, training
— RBFN-400, test
RBFN-1600, training
RBFN-1600, test

10!

g 100

107!

e,

107

0 02 04 06 08 1 12 14
Iterations 104

Radial Basis Function Networks
vs.
Neural Network
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NNFEM.jl: Robustic Constitutive Modeling

@ Comparison of different neural network architectures

o™ = NNg(e" €", ")

o™t = NNg(e”H, €, o0")+o"

a_n+1 _ L9(€n+1, 6", 0'")L9(€n+1, en’a_n)T(ﬁn—I—l _ 6n) +on

plastic defo\rmation elastic }Jnloading

0.06 0.06 T - 0.06

0.05 0.051 XM{ID 0.05 1
E 0044 Z 004 ° 0.04 4
2 2 8
2 003 £ 0031 @ £ 0034 i§
£ o0 £ 002 & O Reference 2 002 2 Reference
7z 7 . -- 1-layer NN1 7 : - 2
= 0.01 = 0.01 [ 1 = 0.01 [

1 --- 3-layer NN1
0.00 4 0.00 4 | --- 4-layer NN1 0.004
0.00 ‘ 005 010 015 020 000 005 010 015 020 000 005 010 015 020
Time (s)

Time (s) Time (s)

elastic deformation
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FwiFlow.jl: Elastic Full Waveform Inversion for subsurface

flow problems

Forward
Observed data - y simulation

1§
o

“ 'l)l

Seismic response

Rocks bulk modulus »- —

CO; saturation

—527 K
= (m; K)

Permeability = Proiaa(;;;ion
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FwiFlow.jl: Fully Nonlinear Implicit Schemes

@ The governing equation is a nonlinear PDE

0 .
5(455//)/) + V- (pivi) = piqi, =12
$1+S =1
Kkri .
vi=———(VPi—gpiVZ), =12
i
ko SLl
k l(sl) — rl~1
' sh 4 gsh
Sk
kro(S1) = 2

sk + ES)?

@ For stability and efficiency, implicit methods are the industrial
standards.

m2(52n+1)

my(S5)

k,,‘(S)

B(SEH — ) = V- (ma(S5THKVE) At = <q5 +af ) At mi(s) = S

@ It is impossible to express the numerical scheme directly in an AD
framework. Physics constrained learning is used to enhance the AD
framework for computing gradients.
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FwiFlow.jl: Showcase

@ Task 1: Estimating the permeability from seismic data
B.C. + Two-Phase Flow Equation + Wave Equation = Seismic Data

120 120
o _ 100
MSE = 218.71
E 80
£ 200 H
dg 60
400 H
0 200 400 600 800 400 600 800 40
Distance (m) Distance (m)
20

@ Task 2: Learning the rock physics model from sparse saturation data.
The rock physics model is approximated by neural networks

f1(51;01) = kr1(51) £(51;02) = kr2(51)

10 | = —kn
—kn

- True kn.
True krp

0.8
0.6
<

b 04

02 0.2

0 100 200 300 400 500 600 700 800 900
Distance (m)

o1 0.0
00 02
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FwiFlow.jl: Showcase

@ Task 3: Learning the nonlocal (space or time) hidden dynamics from
seismic data. This is very challenging using traditional methods (e.g.,
the adjoint-state method) because the dynamics is history dependent.

B.C. + Time-/Space-fractional PDE + Wave Equation = Seismic Data

Governing Equation ¢ =0 c=5
sorn—uan 7 i 7 g
o wan T 0T 0w
T A N
oo i Y

ADCME

Physics Based Machine Learning
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PoreFlow.jl: Inverse Modeling of Viscoelasticity

@ Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

dive(u) — bVp =0

1 0p Oe,(u) k _
M8t+b T \Y% (BmvP) = f(x,t)

o =o(eé€)
@ Approximate the constitutive relation by a neural network
0_n+1 :NNG(UH,GH) + H€n+1

Fixed Pressure Sensors
p=0 ;
L ®
> <
Traction-free No-flow
No-flow
My o > » < o y H §
on o0 =0 | Injection Production kq an N
\\/ No-flow :
P Finite Element

L-o
on Finite Volume Cell

ADCME Physics Based Machine Learning 42 / 50



PoreFlow.jl: Inverse Modeling of Viscoelasticity

@ Comparison with space varying linear elasticity approximation

U:H(X7y)€ (4)

0.150
0250 0.150

o125 0125 0125

0.100

0075

0050

\\ 0.025
5

0.100 0.100

0.075 0,075

\

0,050 0.050

.
0.025 0,025

0.000 0.000 0000
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PoreFlow.jl: Inverse Modeling of Viscoelasticity

Wwoooo.oao
2
z A1
£
-3
b~°v°
—6 | Tovsvso-O- R o ©
° 010,200000000900°%,.....-°
_8 o ° o
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Outline

© Some Perspectives
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A Parameter/Function Learning View of Inverse Modeling

@ Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

V- (0Vu(x)) =0 BC(u(x))=0 (5)
We observe some quantities depending on the solution v and want to
estimate 6.
Expression Description ADCME Solution Note
ey e et
V - (f(x)Vu(x)) =0 Function Inverse Problem Func’t\lizl;raE:IA'\lpe;xzir:'lator f(x) & fu(x)
V - (f(u)Vu(x)) =0 Relation Inverse Problem Physiczeéi:::!r:iiaerdniEegarning f(u) =~ fu(u)
V - (@wVu(x)) =0 Stochastic Inverse Problem Generative Neural Networks @ = fw(Viatent)
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Scopes, Challenges, and Future Work

Physics based Machine Learning: an innovative approach to inverse
modeling.

@ Deep neural networks provide a novel function approximator that outperforms traditional
basis functions in certain scenarios.

@ Numerical PDEs are not on the opposite side of machine learning. By expressing the
known physical constraints using numerical schemes and approximating the unknown with
machine learning models, we combine the best of the two worlds, leading to efficient and
accurate inverse modeling tools.

Automatic Differentiation: the core technique of physics based machine
learning.
@ The AD technique is not new; it has existed for several decades and many software exists.

The advent of deep learning drives the development of robust, scalable and flexible AD
software that leverages the high performance computing environment.

© As deep learning techniques continue to grow, crafting the tool to incorporate machine
learning and AD techniques for inverse modeling is beneficial in scientific computing.

However, AD is not a panacea. Many scientific computing algorithms cannot be directly
expressed by composition of differentiable operators.
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ADCME

o ADCME is the materialization of the physics based machine learning
concept.

o ADCME allows users to use high performance and mathematical
friendly programming language Julia to implement numerical
schemes, and obtain the comprehensive automatic differentiation
functionality, heterogeneous computing capability, parallelism and
scalability provided by the TensorFlow backend.

https://github.com/kailaix/ADCME. j1

et (G +8) 6 Gu=V-(3Vu)+ V¢,
¢, =T1¢+T2Vu,

| g

PML equations

i+ [ Discretization
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A General Approach to Inverse Modeling

Data Deep Neural Netwﬁfi{é”? Pnrerlnw

Nonlocal Operators
https://github.com/lidongzh/FwiFlow.jl

ADSeismic.jl
General Seismic Inversion
https://github.com/kailaix/ADSeismic.jl

ADCME Physics Based Machine Learning

s Hi |
FwiFlow.jl '
Multiphase Flow
Nv

PoreFlow.jl
Geomechanics
Viscoelasticity

Multiphase Flow
Multiphysics

* coming soon

NNFEM.jl
Constitutive Law Modeling
Hyperelasticity
Elasto-Plasticity

* coming soon

49 / 50



Acknowledgement

NNFEM. j1: Joint work with Daniel Z. Huang and Charbel Farhat.
FwiFlow.jl: Joint work with Dongzhuo Li and Jerry M. Harris.

ADSeismic. j1l: Joint work with Weiqiang Zhu and Gregory C.
Beroza.

PoreFlow. jl: Joint work with Alexandre M. Tartakovsky and Jeff
Burghardt.

ADCME Physics Based Machine Learning 50 / 50



