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Inverse Modeling

Inverse modeling identifies a certain set of parameters or functions
with which the outputs of the forward analysis matches the desired
result or measurement.

Many real life engineering problems can be formulated as inverse
modeling problems: shape optimization for improving the performance
of structures, optimal control of fluid dynamic systems, etc.t
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Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization
problem

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

The loss function Lh measures the discrepancy between the prediction
uh and the observation uobs, e.g., Lh(uh) = ‖uh − uobs‖22.
θ is the model parameter to be calibrated.

The physics constraints Fh(θ, uh) = 0 are described by a system of
partial differential equations. Solving for uh may require solving linear
systems or applying an iterative algorithm such as the
Newton-Raphson method.
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Function Inverse Problem

min
f

Lh(uh) s.t. Fh(f , uh) = 0

What if the unknown is a function instead of a set of parameters?

Koopman operator in dynamical systems.

Constitutive relations in solid mechanics.

Turbulent closure relations in fluid mechanics.

...

The candidate solution space is infinite dimensional.
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Physics Based Machine Learning

min
θ

Lh(uh) s.t. Fh(NNθ, uh) = 0

Deep neural networks exhibit capability of approximating high
dimensional and complicated functions.
Physics based machine learning: the unknown function is
approximated by a deep neural network, and the physical constraints
are enforced by numerical schemes.
Satisfy the physics to the largest extent.

ADCME Physics Based Machine Learning 7 / 50



Gradient Based Optimization

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0 (1)

We can now apply a gradient-based optimization method to (1).
The key is to calculate the gradient descent direction gk

θk+1 ← θk − αgk
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Automatic Differentiation

The fact that bridges the technical gap between machine learning and
inverse modeling:

Deep learning (and many other machine learning techniques) and
numerical schemes share the same computational model: composition
of individual operators.

Back-propagation
||

Reverse-mode
Automatic Differentiation

||
Discrete

Adjoint-State Method
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Automatic Differentiation: Computational Graph

A computational graph is a functional description of the required
computation. In the computational graph, an edge represents data,
such as a scalar, a vector, a matrix or a tensor. A node represents a
function (operator) whose input arguments are the the incoming
edges and output values are are the outcoming edges.

How to build a computational graph for z = sin(x1 + x2) + x22x3?
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Automatic Differentiation: Reverse-Mode

The reverse-mode automatic differentiation relies on the chain rule

∂f ◦ g(x)
∂x

=
∂f ′ ◦ g(x)

∂g

∂g ′(x)

∂x

The reverse-mode automatic differentiation stores all intermediate
variables in the forward computation.

Let’s see how to compute ∂z
∂xi

, i = 1, 2, 3 for z = sin(x1 + x2) + x22x3
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Automatic Differentiation: Forward-Mode

The forward-mode automatic differentiation also uses the chain rule
to propagate the gradients.

∂f ◦ g(x)
∂x

=
∂f ′ ◦ g(x)

∂g

∂g ′(x)

∂x

In the forward-mode automatic differentiation, at every stage we
evaluate the operator as well as its gradient.

x

y1 = x2 y2 = sin x

y5 = − y2y3 = y2
1 y4 = y1 + y2 (y1, y

′
1) = (x2, 2x)

(y2, y
′
2) = (sin x , cos x)

(y3, y
′
3) = (y21 , 2y1y

′
1) = (x4, 4x3)

(y4, y
′
4) = (y1 + y1, y

′
1 + y ′2)

= (x2 + sin x , 2x + cos x)

(y5, y
′
5) = (−y2,−y ′2) = (− sin x ,− cos x)
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Automatic Differentiation: Comparison

In general, for a function f : Rn → Rm

Mode Suitable for ... Complexity1 Application

Forward m ≫ n ≤ 2.5 OPS(f (x)) UQ
Reverse m ≪ n ≤ 4 OPS(f (x)) Inverse Modeling

Margossian CC. A review of automatic differentiation and its efficient implementation.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019

Jul;9(4):e1305.

1OPS is a metric for complexity in terms of fused-multiply adds.
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Computational Graph for Numerical Schemes

To leverage automatic differentiation for inverse modeling, we need to
express the numerical schemes in the “AD language”: computational
graph.

No matter how complicated a numerical scheme is, it can be
decomposed into a collection of operators that are interlinked via
state variable dependencies.

S2

u ϕ

mt
Ψ2

ϕ(Sn+1
2 − Sn

2) − ∇ ⋅ (m2(Sn+1
2 )K ∇Ψn

2) Δt = (qn
2 + qn

1
m2(Sn+1

2 )
m1(Sn+1

2 ) ) Δt

S2

u ϕ

mt
Ψ2

S2

u ϕ

mt
Ψ2

tn tn+1 tn+2
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

Consider a concrete PDE-constrained optimization problem:

min
u1,θ

J = f4(u1,u2,u3,u4),

s.t. u2 = f1(u1,θ),

u3 = f2(u2,θ),

u4 = f3(u3,θ).

– f1, f2, f3 are PDE constraints
– f4 is the loss function
– u1 is the initial condition
– θ is the model parameter

u1
u2u1 u3

u4

J

f1 f2 f3

f4

θ
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

Solving the constrained optimization method using adjoint-state methods:

The Lagrange multiplier is

J = f4(u1, u2, u3, u4)+λT
2 (f1(u1,θ)− u2)+λT

3 (f2(u2,θ)− u3)+λT
4 (f3(u3,θ)− u4)

Therefore, the first order KKT condition of the constrained PDE
system is

λT
4 =

∂f4
∂u4

λT
3 =

∂f4
∂u3

+ λT
4

∂f3
∂u3

λT
2 =

∂f4
∂u2

+ λT
3

∂f2
∂u2

∂L
∂θ

= λT
2

∂f1
∂θ

+ λT
3

∂f2
∂θ

+ λT
4

∂f3
∂θ

⇒ Sensitivity ∂J
∂θ
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

How do we implement reverse-mode automatic differentiation for
computing the gradients?

Consider the operator f2, we need to implement two operators

Forward: u3 = f2(u2,θ)

Backward:
∂J

∂u2
,
∂J

∂θ
= b2

!
∂Jtot

∂u3
,u2,θ

"

∂Jtot

∂u3
is the “total” gradient u3 received from the downstream in the

computational graph.

The backward operator is implemented using the chain rule

∂J

∂u2
=

∂Jtot

∂u3

∂f2
∂u2

∂J

∂θ
=

∂Jtot

∂u3

∂f2
∂θ

What are ∂J
∂u2

, ∂J
∂θ , and

∂Jtot

∂u3
exactly?
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

The total gradient u2 received is

∂Jtot

∂u2
=

∂f4
∂u2

+
∂J

∂u2
=

∂f4
∂u2

+
∂Jtot

∂u3

∂f2
∂u2

The dual constraint in the KKT con-
dition

λT
2 =

∂f4
∂u2

+ λT
3

∂f2
∂u2

u1
u2u1 u3

u4

J

f1 f2 f3

f4

θ

∂f4
∂u2

∂J
∂u2

∂Jtot

∂u3

The following equality can be verified

λT
i =

∂Jtot

∂ui

In general, the reverse-mode AD is back-propagating the Lagrange
multiplier (adjoint variables).
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The Relationship between reverse-mode Automatic
Differentiation and KKT Condition

The well-established adjoint-state method is equivalent to solving the
KKT system.

The adjoint-state methods are challenging to implement, mainly due
to the time-consuming and difficult process of deriving the gradients
in a complex system.

Using reverse-mode automatic differentiation is equivalent to solving
the inverse modeling problem using discrete adjoint-state methods,
but in a more manageable way.

Computational graph based implementation also allows for automatic
compilation time optimization and parallelization.
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Challenges in AD

Most AD frameworks only deal
with explicit operators, i.e., the
functions that has analytical
derivatives, or composition of
these functions.

Many scientific computing
algorithms are iterative or
implicit in nature.

Linear/Nonlinear Explicit/Implicit Expression

Linear Explicit y = Ax
Nonlinear Explicit y = F (x)
Linear Implicit Ax = y
Nonlinear Implicit F (x , y) = 0
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Example

Consider a function f : x → y , which is implicitly defined by

F (x , y) = x3 − (y3 + y) = 0

If not using the cubic formula for finding the roots, the forward
computation consists of iterative algorithms, such as the Newton’s
method and bisection method

y0 ← 0
k ← 0
while |F (x , yk)| > ε do

δk ← F (x , yk)/F ′
y (x , y

k)

yk+1 ← yk − δk

k ← k + 1
end while
Return yk

l ← −M, r ← M, m ← 0
while |F (x ,m)| > ε do

c ← a+b
2

if F (x ,m) > 0 then
a ← m

else
b ← m

end if
end while
Return c
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Example

An efficient way is to apply the implicit function theorem. For our
example, F (x , y) = x3 − (y3 + y) = 0, treat y as a function of x and
take the derivative on both sides

3x2 − 3y(x)2y ′(x)− 1 = 0 ⇒ y ′(x) =
3x2 − 1

3y(x)2

The above gradient is exact.

Can we apply the same idea to inverse modeling?
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Physics Constrained Learning

min
θ

Lh(uh) s.t. Fh(θ, uh) = 0

Assume in the forward computation, we solve for uh = Gh(θ) in
Fh(θ, uh) = 0, and then

L̃h(θ) = Lh(Gh(θ))

Applying the implicit function theorem

∂Fh(θ, uh)

∂θ
+

∂Fh(θ, uh)

∂uh

∂Gh(θ)

∂θ
= 0 ⇒

∂Gh(θ)

∂θ
= −

!∂Fh(θ, uh)

∂uh

"−1 ∂Fh(θ, uh)

∂θ

Finally we have

∂L̃h(θ)

∂θ
=

∂Lh(uh)

∂uh

∂Gh(θ)

∂θ
= −

∂Lh(uh)

∂uh

!∂Fh(θ, uh)

∂uh

###
uh=Gh(θ)

"−1 ∂Fh(θ, uh)

∂θ

###
uh=Gh(θ)
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Physics Constrained Learning

∂L̃h(θ)

∂θ
= −

∂Lh(uh)

∂uh

!∂Fh(θ, uh)

∂uh

###
uh=Gh(θ)

"−1 ∂Fh(θ, uh)

∂θ

###
uh=Gh(θ)

Step 1: Calculate w by solving a linear system (never invert the matrix!)

wT =
∂Lh(uh)

∂uh

$ %& '
1×N

!∂Fh

∂uh

###
uh=Gh(θ)

"−1

$ %& '
N×N

Step 2: Calculate the gradient by automatic differentiation

wT ∂Fh

∂θ

###
uh=Gh(θ)$ %& '
N×p

=
∂(wT Fh(θ, uh))

∂θ

#####
uh=Gh(θ)
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Physics Constrained Learning: Linear System

Many physical simulations require solving a linear system

A(θ2)uh = θ1

The corresponding PDE constraint in our formulation is

Fh(θ1, θ2, uh) = θ1 − A(θ2)uh = 0

The backpropagation formula

p :=
∂L̃h(θ1, θ2)

∂θ1
=

∂Lh(uh)

∂uh
A(θ2)

−1

q :=
∂L̃h(θ1, θ2)

∂θ2
= −∂Lh(uh)

∂uh
A(θ2)

−1∂A(θ2)

∂θ2

which is equivalent to

ATpT =

!
∂Lh(uh)

∂uh

"T

q = −p
∂A(θ2)

∂θ2
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ADSeismic.jl: A General Approach to Seismic Inversion

Many seismic inversion problems can be solved within a unified
framework.
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ADSeismic.jl: Earthquake Location Example

The earthquake source function is parameterized by (g(t) and x0 are
unknowns)

f (x , t) =
g(t)

2πσ2
exp

!
− ||x − x0||2

2σ2

"
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ADSeismic.jl: Benchmark

ADCME makes the heterogeneous computation capability of
TensorFlow available for scientific computing.
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NNFEM.jl: Constitutive Modeling

σij ,j#$%&
stress

+ρ bi#$%&
external force

= ρ üi#$%&
velocity

εij#$%&
strain

=
1

2
(uj ,i + ui ,j)

(2)

Observable: external/body force bi , displacements ui (strains εij can
be computed from ui ); density ρ is known.

Unobservable: stress σij .

Data-driven Constitutive Relations: modeling the strain-stress relation
using a neural network

stress = Mθ(strain, . . .) (3)

and the neural network is trained by coupling (1) and (2).
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NNFEM.jl: Robustic Constitutive Modeling

Proper form of constitutive relation is crucial for numerical stability

Elasticity ⇒ σ = Cθε

Hyperelasticity ⇒
!
σ = Mθ(ε) (Static)

σn+1 = Lθ(ε
n+1)Lθ(ε

n+1)T (εn+1 − εn) + σn (Dynamic)

Elaso-Plasticity ⇒ σn+1 = Lθ(ε
n+1, εn,σn)Lθ(ε

n+1, εn,σn)T (εn+1 − εn) + σn

Lθ =

"

######$

L1111

L2211 L2222

L3311 L3322 L3333

L2323

L1313

L1212

%

&&&&&&'

Weak convexity: LθL
T
θ ≻ 0

Time consistency: σn+1 → σn when εn+1 → εn
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NNFEM.jl: Robustic Constitutive Modeling

Weak form of balance equations of linear momentum

Pi (θ) =

(

V

ρüiδuidVt +

(

V

σij(θ)) *+ ,
embedded neural network

δεijdV

Fi =

(

V

ρbiδuidV +

(

∂V

tiδuidS

Train the neural network by

L(θ) = min
θ

N(

i=1

(Pi (θ)− Fi )
2

The gradient ∇L(θ) is computed via automatic differentiation.

ADCME Physics Based Machine Learning 35 / 50



NNFEM.jl: Robustic Constitutive Modeling
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NNFEM.jl: Robustic Constitutive Modeling

Comparison of different neural network architectures

σn+1 = Lθ(ε
n+1, εn,σn)Lθ(ε

n+1, εn,σn)T (εn+1 − εn) + σn

σn+1 = NNθ(ε
n+1, εn,σn)

σn+1 = NNθ(ε
n+1, εn,σn) + σn
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FwiFlow.jl: Elastic Full Waveform Inversion for subsurface
flow problems

ADCME Physics Based Machine Learning 38 / 50



FwiFlow.jl: Fully Nonlinear Implicit Schemes

The governing equation is a nonlinear PDE

∂

∂t
(φSiρi ) +∇ · (ρivi ) = ρiqi , i = 1, 2

S1 + S2 = 1

vi = −
Kkri

µ̃i
(∇Pi − gρi∇Z), i = 1, 2

kr1(S1) =
ko
r1S

L1
1

SL1
1 + E1S

T1
2

kr2(S1) =
SL2
2

SL2
2 + E2S

T2
1

For stability and efficiency, implicit methods are the industrial
standards.

φ(Sn+1
2 − Sn

2 )−∇ ·
)
m2(S

n+1
2 )K∇Ψn

2

*
∆t =

+
qn2 + qn1

m2(S
n+1
2 )

m1(S
n+1
2 )

,
∆t mi (s) =

kri (s)

µ̃i

It is impossible to express the numerical scheme directly in an AD
framework. Physics constrained learning is used to enhance the AD
framework for computing gradients.
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FwiFlow.jl: Showcase

Task 1: Estimating the permeability from seismic data

B.C. + Two-Phase Flow Equation + Wave Equation ⇒ Seismic Data

Task 2: Learning the rock physics model from sparse saturation data.
The rock physics model is approximated by neural networks

f1(S1; θ1) ≈ kr1(S1) f2(S1; θ2) ≈ kr2(S1)
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FwiFlow.jl: Showcase

Task 3: Learning the nonlocal (space or time) hidden dynamics from
seismic data. This is very challenging using traditional methods (e.g.,
the adjoint-state method) because the dynamics is history dependent.

B.C. + Time-/Space-fractional PDE + Wave Equation ⇒ Seismic Data

Governing Equation σ = 0 σ = 5

C
0 D

0.8
t m = 10∆m

a/a∗ = 1.0000
α = 0.8000

a/a∗ = 0.9109
α = 0.7993

C
0 D

0.2
t m = 10∆m

a/a∗ = 0.9994
α = 0.2000

a/a∗ = 0.3474
α = 0.1826

∂m
∂t = −10(−∆)0.2m

a/a∗ = 1.0000
s = 0.2000

a/a∗ = 1.0378
s = 0.2069

∂m
∂t = −10(−∆)0.8m

a/a∗ = 1.0000
s = 0.8000

a/a∗ = 1.0365
s = 0.8093
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PoreFlow.jl: Inverse Modeling of Viscoelasticity

Multi-physics Interaction of Coupled Geomechanics and Multi-Phase
Flow Equations

divσ(u)− b∇p = 0

1

M

∂p

∂t
+ b

∂εv (u)

∂t
−∇ ·

!
k

Bf µ
∇p

"
= f (x , t)

σ = σ(ε, ε̇)

Approximate the constitutive relation by a neural network

σn+1 = NN θ(σ
n, εn) + Hεn+1

Traction-free
∂u
∂n

= 0

No-flow
∂p
∂n

= 0

Fixed Pressure
p = 0

No-flow
∂p
∂n

= 0
No-flow
∂p
∂n

= 0 Injection Production

x

y

Finite Element 
Finite Volume Cell

He
1 He

2

He
3 He

4

e

Sensors
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PoreFlow.jl: Inverse Modeling of Viscoelasticity

Comparison with space varying linear elasticity approximation

σ = H(x , y)ε (4)
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PoreFlow.jl: Inverse Modeling of Viscoelasticity
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A Parameter/Function Learning View of Inverse Modeling

Most inverse modeling problems can be classified into 4 categories.
To be more concrete, consider the PDE for describing physics

∇ · (θ∇u(x)) = 0 BC(u(x)) = 0 (5)

We observe some quantities depending on the solution u and want to
estimate θ.

Expression Description ADCME Solution Note

∇ · (c∇u(x)) = 0 Parameter Inverse Problem
Discrete Adjoint
State Method

c is the minimizer of
the error functional

∇ · (f (x)∇u(x)) = 0 Function Inverse Problem
Neural Network

Functional Approximator
f (x) ≈ fw (x)

∇ · (f (u)∇u(x)) = 0 Relation Inverse Problem
Residual Learning

Physics Constrained Learning
f (u) ≈ fw (u)

∇ · (ϖ∇u(x)) = 0 Stochastic Inverse Problem Generative Neural Networks ϖ = fw (vlatent)
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Scopes, Challenges, and Future Work

Physics based Machine Learning: an innovative approach to inverse
modeling.

1 Deep neural networks provide a novel function approximator that outperforms traditional
basis functions in certain scenarios.

2 Numerical PDEs are not on the opposite side of machine learning. By expressing the
known physical constraints using numerical schemes and approximating the unknown with
machine learning models, we combine the best of the two worlds, leading to efficient and
accurate inverse modeling tools.

Automatic Differentiation: the core technique of physics based machine
learning.

1 The AD technique is not new; it has existed for several decades and many software exists.

2 The advent of deep learning drives the development of robust, scalable and flexible AD
software that leverages the high performance computing environment.

3 As deep learning techniques continue to grow, crafting the tool to incorporate machine
learning and AD techniques for inverse modeling is beneficial in scientific computing.

4 However, AD is not a panacea. Many scientific computing algorithms cannot be directly
expressed by composition of differentiable operators.
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ADCME

ADCME is the materialization of the physics based machine learning
concept.
ADCME allows users to use high performance and mathematical
friendly programming language Julia to implement numerical
schemes, and obtain the comprehensive automatic differentiation
functionality, heterogeneous computing capability, parallelism and
scalability provided by the TensorFlow backend.

https://github.com/kailaix/ADCME.jl
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A General Approach to Inverse Modeling

A   CME

Conservation Laws

Data Deep Neural Networks

Numerical Schemes

FwiFlow.jl 
Multiphase Flow 

Nonlocal Operators 
https://github.com/lidongzh/FwiFlow.jl

ADSeismic.jl 
General Seismic Inversion 

https://github.com/kailaix/ADSeismic.jl

NNFEM.jl 
Constitutive Law Modeling 

Hyperelasticity 
Elasto-Plasticity 

* coming soon

PoreFlow.jl 
Geomechanics 
Viscoelasticity 

Multiphase Flow 
Multiphysics 

* coming soon
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