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Abstract: The paper proposes a framework for sensitivity analyses of blackbox constrained opti-
mization problems for which Lagrange multipliers are not available. Two strategies are developed
to analyze the sensitivity of the optimal objective function value to general constraints. These are
a simple method which may be performed immediately after a single optimization, and a detailed
method performing biobjective optimization on the minimization of the objective versus the con-
straint of interest. The detailed method provides points on the Pareto front of the objective versus a
chosen constraint. The proposed methods are tested on an academic test case and on an engineering
problem using the mesh adaptive direct search algorithm.
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1 Introduction

Optimization aims at identifying an argument that minimizes a given objective function subject to
satisfying a set of constraints. But when this goal is reached, the next question is to asses the
problem formulation by considering the change in the optimal value of the objective function when
constraints are slightly perturbed. In the smooth case, and under appropriate constraint qualifica-
tions, this sensitivity study is usually done by analyzing the Lagrange multipliers, which represent
the directional derivative of the objective function in the directions of the gradient of the constraints.
In a more general context, it is frequent that these multipliers do not exist or they are not unique.
Still, the sensitivity question remains important. We propose here two practical ways of providing
information to answer this question, and introduce a general framework designed to work with other
derivative-free methods [13].
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Our first approach can be applied immediately after a single optimization of the problem, and
does not require any supplementary function evaluations. Our detailed approach is not so inexpen-
sive and neither approach is as precisely related to sensitivity derivatives as the Lagrange multipliers,
but we believe that our approaches provide useful information about how much could be gained in
the objective function by a trade-off of slightly relaxing the constraints.

Consider the general constrained optimization problem

min
x∈Ω

f(x) (1)

where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn denotes the feasible region, and f, cj : X → R∪{∞}
for all j ∈ J = {1, 2, . . . ,m}, andX is a subset of Rn. The constraints cj(x) ≤ 0 with j ∈ J provide
measures of their violations and thus are referred to as quantifiable constraints. The set X may also
be defined with functions or relations, but these are not explicitly provided or give no measure of
violation, such as binary constraints for instance. The objective function f , most of the functions
cj(x), and most of the functions defining X are considered as blackbox functions according to
the terminology used in [8]. Such functions are typically the result of computer simulations that
sometimes fail to evaluate even for points satisfying all explicit constraints. Not all functions are
necessarily provided as blackboxes and some may simply be bounds on the variables for example.

Following the terminology used in [8] and in the book [13], we partition the constraints in three
categories: First, unrelaxable constraints either cannot be violated by any trial point in order for the
simulation to execute, or else, the user has specified that they should always hold – linear inequalities
might be an example of the latter case. For example, a quantifiable constraint representing a length
needs to be nonnegative otherwise the code will fail. Second, relaxable constraints may be violated
and the simulation will execute. A constraint representing a monetary budget is an example of a
relaxable constraint. For these constraints, a measure of how much the constraint is violated must
be provided. Finally hidden constraints [12] refer to constraints that are not known a priori and is
a convenient term to exclude the points in the feasible region at which the blackbox fails to return a
value. In [11] and [3] the simulations failed to execute on 60% and 43% of the calls, respectively.

With this terminology, it is natural to label the constraints defining the set X as unrelaxable.
Hidden constraints are implicitly part of the definition of X . However the quantifiable constraints
cj ≤ 0 with j ∈ J may be relaxable or unrelaxable. In the example above, the nonnegative length
is unrelaxable, but the monetary budget is relaxable. Note also that explicit bounds on the variables
may be considered as quantifiable constraints and may be written as cj = xi−ui ≤ 0 or cj = li−xi ≤
0 for some j ∈ J and i ∈ 1, 2, . . . , n. Bounds may be treated as relaxable or unrelaxable constraints,
as can any other quantifiable constraints. Let JR and JU denote a partition of J containing the indices
of the relaxable and unrelaxable constraints, respectively.

There are different strategies to deal with individual blackbox constraints and the strategies need
not be identical for every constraint. The most drastic method to treat a constraint is the extreme
barrier approach (EB) which consists in rejecting any trial point that violates the constraint [6].
Constraints that are not quantifiable are required in our codes to be treated by the EB. This means
that the entire set X including the hidden constraints are handled by the EB. However a user may
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choose to treat some relaxable constraints with the EB approach. A useful consequence is that when
the functions defining the problem are evaluated sequentially, then the EB approach can interrupt
this process and save the costly process of launching (or completing) the simulation to evaluate the
remaining functions.

Alternate relaxable constraint-handling approaches are the filter [5] and the progressive bar-
rier [7] methods, originally designed for the Generalized Pattern Search (GPS) [11] and the Mesh
Adaptive Direct Search algorithm (MADS) [6] for blackbox optimization, respectively. These meth-
ods may be used with different derivative-free algorithms to allow exploration of the infeasible
region by exploiting the measures of the constraints violations. The constraints defining X as well
as quantifiable unrelaxable constraints (i.e. those indexed by JU ) are treated by the EB within these
strategies. Thus only relaxable constraints cj ≤ 0 with j ∈ JR are explicitly brought to feasibility
by the filter or the progressive barrier.

In summary, the extreme barrier is used for the constraints defining X and the quantifiable unre-
laxable constraints cj ≤ 0 with j ∈ JU , and the filter or the progressive barrier (not both) are used
to handle the relaxable constraints cj ≤ 0 with j ∈ JR.

The present paper proposes two methods, named the simple and the detailed methods, to study
the trade-offs of the objective versus the quantifiable constraints including bounds on the variables.
The outputs of both our methods are related to so-called “trade studies” and they are represented by
plots of the objective function f versus each quantifiable constraints cj(x) ≤ 0 over the domain

x ∈ Ωj = {x ∈ X : ci(x) ≤ 0, i ∈ J \ {j}} .

The set Ωj is a relaxation of the true domain Ω, obtained by eliminating the quantifiable constraint
cj(x) ≤ 0. The simple method produces a coarse approximation of the sensitivity at no cost simply
by inspecting the cache (or the history) generated by the derivative-free algorithm. The cache con-
tains all trial points and function values evaluated during one or several executions of the algorithm.
The detailed method requires more function evaluations but provides a better approximation of the
sensitivity. It consists in solving biobjective optimization problems of f versus cj with x ∈ Ωj for
selected j ∈ J , while requiring feasibility with respect to the other constraints. Thus the detailed
method requires the use of a derivative-free method for biobjective optimization problems such as
the ones proposed in [9] or [14]. See [17] for interesting contextual examples in aerospace design.

The paper is divided as follows: Section 2 presents the simple and detailed methods to analyze
the sensitivity to constraints. Section 3 illustrates them with the MADS algorithm on an academic
smooth test problem to confirm that the proposed sensitivity analysis indeed produces approxima-
tions of the Lagrange multipliers. Numerical results are also given for a previously studied styrene
process production problem [4] containing relaxable, unrelaxable, and hidden constraints.
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2 Trade-offs between the objective and constraints

Both the filter and progressive barrier approaches use a constraint violation function [16]

h(x) :=


∑
j∈JR

(max(cj(x), 0))2 if x ∈ X ,

∞ otherwise.

to handle the relaxable constraints. This function equals 0 if and only if all relaxable constraints are
satisfied. Otherwise h aggregates the violation of all relaxable constraints and is strictly positive.
The filter and the progressive barrier accept or reject trial points according to compromises between
the objective function and the constraints violation values. In addition, a trial point is not considered
when its constraint violation value exceeds a given threshold hmax, or any of the unrelaxable con-
straints is violated. In situations where the constraints are evaluated sequentially, the process may
be interrupted as soon as the incomplete sum of squared violations exceeds hmax. This procedure
is similar to the one where trial points violate the unrelaxable constraints and avoids unnecessary
computational work.

Papers [15, 16, 5, 7, 8] using the filter or the progressive barrier approaches provide some sort
of sensitivity analysis by plotting the objective function value f versus the constraint violation h(x).
These plots can give some valuable information, as they can be use to perform local explorations
around slightly infeasible solutions having a low objective function value. However these plots rely
on an aggregation of the constraints and make it impossible to study the sensitivity with respect to
an individual constraint. The approaches proposed in the next two subsections treat separately the
trade-off between each quantifiable constraint cj, j ∈ JU ∪ JR versus the objective f whether or not
the constraint is treated with the extreme or progressive barriers, or the filter.

2.1 A post-optimization sensitivity analysis: the simple method

In practice, applying derivative-free software to an optimization problem creates a cache containing
the coordinates of a finite number of trial points and their corresponding objective and constraint
values. An existing cache may be provided as input to a new execution of the software, resulting in
a larger cache.

Let V ⊂ Rn denote the set of all trial points generated during one or several executions of the
algorithm. The cache contains every x ∈ V as well as values for f(x), cj(x), j ∈ J , and a binary
flag indicating whether or not x is in X . Another flag indicates if f or some values of cj are missing.

The following steps are defined to construct a rough approximation of the trade-offs between the
quantifiable constraints and the objective function. The form of these approximations consists of a
series of m two-dimensional plots Pj for j ∈ J . Let V ′ ⊆ V be the set of trial points satisfying the
unrelaxable constraints x ∈ X and for which f and all values of cj with j ∈ J are defined. The
set V ′ is constructed by a simple inspection of the cache. The simple method enumerates every trial
point x ∈ V ′ and for every constraint j ∈ J , it adds the point (cj(x), f(x)) to the plot Pj .



August 26, 2010 5

The plot Pj will possibly contain positive and negative values of cj(x) but only nonpositive
values for unrelaxable constraints. This provides information of the sensitivity of f when perturbing
the constraint.

The analysis is also valid for integer or boolean constraints. A boolean constraint for example
will produce a plot indicating the objective function values for both binary values.

The quality of the sensitivity analysis obtained by the inspection of the cache depends heavily
on the effort deployed by the optimization process. There are cases, as we will see in the numerical
results below, in which the simple analysis does not give significant insight. But this is mitigated
since the simple analysis is obtained for free after a single optimization, i.e. without any additional
function calls. The next section proposes a way to enhance the analysis.

2.2 Sensitivity analysis using biobjective optimization: the detailed method

In this section we propose a way to generate a more complete sensitivity plot Tj of the objective
function f versus the quantifiable constraint cj(x) ≤ 0. We suggest to start by solving problem (1)
and then to follow with a simple analysis, as defined in Section 2.1. Then, perform detailed analyses
in sequence for each active or nearly active constraints of interest. The cache is not purged between
the different detailed analyses, and it grows at each analysis. The set V ′ is defined as in the previous
section to be the set of previously generated trial points satisfying the unrelaxable constraints for
which all function values are defined in the cache.

The detailed analysis for the quantifiable constraint cj ≤ 0 is done as follows. Let cj ≤ 0

and cj ≥ 0 be two user-provided bounds to restrain the analysis to interesting ranges of constraint
violations. The constraint cj ≤ 0 is replaced with the two related constraints cj ≤ cj(x) ≤ cj .
The status of the two new constraints is unrelaxable even if the original constraint they replace was
relaxable. If one only wishes to analyze a relaxation of the constraint, then one would set cj = 0.
The value cj = −∞ is also possible if one wishes to study extreme tightening of the constraint.
Similarly if one only wishes to analyze a tightening of the constraint, then one would set cj = 0.
The value cj =∞ is also possible if one wishes to study the effect of removing the constraint.

The trade-off plot Tj is obtained by applying the simple method proposed in the previous version
by analyzing the enriched cache obtained after the application of the derivative-free solver to the
following biobjective problem

min
x∈Ωj

(cj(x), f(x))

s.t. cj ≤ cj(x) ≤ cj (2)

using a biobjective derivative-free algorithm.

Unlike the free simple analysis, each detailed analysis requires additional function evaluations.
It is the price to pay for a more complete trade-off study. Besides, a designer may consider at
least some of these trade-off results to be an essential part of the design process. However this cost
may be entirely controlled by the user of the method by selecting which quantifiable constraints to
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analyze, and by setting appropriate stopping criteria or precision in the biobjective algorithm. In the
numerical results of this paper, an upper bound on the number of evaluations is used as the stopping
criterion.

2.3 Sensitivity and Lagrange multipliers

The present work is designed for blackbox optimization. Nonetheless, to understand the behavior of
the proposed framework, we interpret the signification of the results on smoother problems.

Let x∗ be a local optimal solution of problem (1) and suppose that for some quantifiable con-
straint j ∈ J a unique Lagrange multiplier exists, is strictly positive, and is denoted by λj . The
KKT conditions ensure that the constraint is active: cj(x∗) = 0. It is well-known that λj represents
the sensitivity of the optimal objective function value with respect to the right-hand side value of
the corresponding constraint [19]. Under appropriate constraint qualifications, this signifies that if
the constraint cj(x) ≤ 0 is replaced by cj(x) ≤ ε, then for small values of ε the optimal objective
function value varies by approximately−ελj . Another way of stating this result is that if x∗(ε) is the
optimal solution to the perturbed problem with the same active constraints as x∗, then

df(x∗(ε))

dε

∣∣∣∣
ε=0

= −λj. (3)

Define Ω′j := {x ∈ ΩJ : cj ≤ cj(x) ≤ cj} to be the domain of the biobjective problem (2)
considered by the detailed analysis, and let T ∗j be the set of all optimal trade-off solutions of the
same problem:

T ∗j = {(cj(x), f(x)) : x ∈ Ω′J , y 6≺ x ∀y ∈ Ω′J}

where y ≺ x stands for “y dominates x” and means that cj(y) ≤ cj(x) and f(y) ≤ f(x) with at least
one of the two inequalities being strict. Therefore a solution x ∈ Ω′j belongs to T ∗j if and only if it is
not dominated by any solution of Ω′J . The undominated points Tj generated by the detailed analysis
is an approximation of the trade-off set T ∗j .

Theorem 2.1 Let x∗ be a local optimal solution of problem (1) with a unique Lagrange multiplier
λ, and let j ∈ J be index of an active constraint with λj > 0. The slope of the tangent to the set T ∗j
at cj(x) = 0 is equal to −λj .

Proof. Since j is the index of an active constraint, the trade-off set T ∗j contains the optimal solutions
of problem (1) in which the constraint cj(x) ≤ 0 is replaced by cj(x) ≤ ε for all values of ε ranging
from cj to cj . The plot of the set T ∗j contains the trade-offs between the objective function value
f(x) versus the quantifiable constraint cj(x). When it is nonzero, the slope of the tangent to that
set at cj(x) = 0 corresponds to the variation rate of the objective function value with respect to
the right-hand-side of the constraint cj(x) ≤ ε. Equation (3) ensures that the slope is equal to the
negative of the Lagrange multiplier λj . �

Observe that the set T ∗j contains more information than what can be deduced from a Lagrange
multiplier. The set provides the exact optimal values of the optimization problem when the upper
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bound on the constraint varies from cj to cj , as the multiplier only gives the slope at cj(x) = 0. The
numerical results below illustrate this observation on two problems.

3 Numerical results

This section shows the application of the framework described in the previous sections. A first
subsection gives the technical details concerning the implementation with the NOMAD software.
Two test-problems are then considered: First an academic smooth and convex problem for which the
Lagrange multipliers are known, and second a real blackbox application from chemical engineering.

3.1 Implementation details

All numerical experiments are performed using version 3.4 of the NOMAD software [1, 18] designed
for constrained blackbox optimization. It implements the Mesh Adaptive Direct Search algorithm
(MADS) [6] and is distributed under the LGPL licence.

Two new tools were added to this version of the NOMAD package to conduct sensitivity analyses.
The first one, called cache inspect, corresponds to the simple analysis presented in Section 2.1.
It consists in looping through the cache generated by a NOMAD optimization run and either displays
V ′ or undominated points relative to the objective and to the studied constraint or bound. The
second tool is called detailed analysis and corresponds to the detailed analysis described in
Section 2.2 that transforms a given constraint or variable bound into a second objective.

The BIMADS algorithm described in [9] is used for biobjective optimization. It is included
in the NOMAD package. The BIMADS method consists in launching several single-objective re-
formulations of the biobjective problem in order to approximate the Pareto front. The two first
single-objective optimizations correspond to the two individual objectives while the other runs com-
bine both objective. Because of well-known drawbacks to weighting the objectives, BIMADS uses
nonlinear reformulations which are solved by the single-objective MADS algorithm. Although the
detailed analysis may be launched directly, it is typically performed after a simple analysis, and each
run adds points to the existing cache.

It is possible to initiate NOMAD with several starting points but we observed that considering all
the cache points as starting solutions leads to bad behavior and unbalanced results. Instead the cache
is inspected prior to the biobjective optimization and only one feasible starting point with the best
value of the BIMADS single-objective formulation is used as starting point.

This cache inspection allows us to deactivate the Latin Hypercube (LH) search [20] performed
by default at the first BIMADS iteration thus saving some computational resources. The original
purpose of this search is to provide a good initial guess for the first single-objective optimization.
Another advantage of disabling the LH search is that it allows to perform deterministic experiments
as long as the ORTHOMADS [2] types of directions are used, as they are by default.
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The snap to bounds strategy is also enabled.This consists in projecting back to the bounds
points that are generated outside the boundaries.

When the constraint corresponds to a bound on a variable, then cj(x) = xi − ui ≤ 0 or cj(x) =

li − xi ≤ 0 is replaced with cj ≤ cj(x) ≤ cj . New bounds are defined in order to refine the domain
and a simple rescaling of the variable is applied in order to conserve the original magnitude.

A maximal number of evaluations bb eval may be given as well as an initial maximal num-
ber of evaluations init bb eval which limit the number of evaluations performed by the two
first single-objective optimizations. This is motivated by the fact that a more consistent effort on
these two first optimizations is necessary in order to obtain a well distributed approximation of the
Pareto front. For the academic problem, the values bb eval= 1000 and init bb eval= 100 are
considered.

The post-optimization tools for sensitivity analysis (cache inspection and automatic biobjective
formulation) as well as the two test-problems described in the next two sections are included in the
NOMAD package and are described in the user-guide.

3.2 An academic test problem

Consider the three-variable optimization problem

min
x∈R3

+

(x1 − 5)2 + (x2 − 6)2 + (x3 − 2)2

s.t. x1 ≤ 2,

x2 ≤ 2,

x3 ≤ 2,

x2
1 + x2

2 + x2
3 − 9 ≤ 0.

The unique optimal solution is x∗ = (2, 2, 1) with optimal value f ∗ = 26 and the Lagrange mul-
tipliers are λ = (2, 4, 0, 1). The NOMAD software was applied to this problem with the default
parameters and it terminated after 592 function evaluations as the mesh size parameter dropped be-
low the numerical precision of the machine. The bounds on the variables were treated by the extreme
barrier approach and the spherical constraint was treated by the progressive barrier.

The simple analysis is illustrated in Figure 1 which zooms in on the objective function values for
every point in Ωj , j = 1, 2, 3, 4, and the wider plot on the bottom shows the trade-off solutions for
the three active constraints at the optimal solution. Using the notation introduced in Section 2, the
first four plots display the sets Pj and the last one displays T ∗j .

The fact that the upper bounds on the variables are treated by the extreme barrier is apparent on
the figure as no points have a constraint value exceeding zero. The constraint x2 ≤ 3 is inactive at
the optimal solution and becomes active near x3 − 2 ≤ −1, i.e. when x3 ≤ 1. This is why it does
not appear on the plot for the active constraints.

The light colored continuous curve on each four plots associated to one constraint represents
the analytical minimal objective function value with respect to the constraint value, and coincides
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Figure 1: Simple sensitivity analysis for the academic problem.

by construction with the set T ∗j . The curve is only plotted for the constraint values for which the
optimal solution have the same three active constraints. The slope at cj = 0 of this curve is equal to
the corresponding Lagrange multiplier. We observe that the points generated by the simple approach
are close to this theoretical curves.

The bottom figure suggests that the upper bound on x1 and on x2 have a more significant effect
on the objective function value than the spherical constraint. Indeed, the corresponding multipliers
are 2 and 4 for the bounds and 1 for the nonlinear constraint. The relative effect of the two bound
constraints is not clearly apparent on the figure. To make it more apparent, three detailed analyses
were performed, each with a budget of 1, 000 function evaluations. The first one studied f versus
the upper bound on x1 and is illustrated in Figure 2 for 1.9 ≤ x1 ≤ 2.1. The undominated points of
the set Tj generated by this particular analysis are very close to the light colored theoretical curve.
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Figure 2: Detailed sensitivity analysis for the academic problem: f versus x1 − 2 ≤ 0.

Detailed sensitivity analyses were then performed on the active constraints x2 − 2 ≤ 0 and
x2

1 + x2
2 + x2

3− 9 ≤ 0 and the resulting sets Tj are displayed in Figure 3. The trade-offs between the
objective and the constraint are much more visible than in the plots of Figure 1.
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Figure 3: Detailed sensitivity analyses for the academic problem: the active constraints.

Notice that the first plot of Figure 3 differs significantly from that of Figure 2. Additional points
satisfying x1 ≤ 2 were generated during the detailed analyses of the two other constraints. The
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undominated points in each plots are very close to the theoretical ones obtained by studying the
analytical expression of the problem. The fourth subplot clearly reveals the relative importance of
the constraints. Undoubtedly the slopes at cj = 0 of the trade-off curve approximations are close to
−2, −4, and −1, which are the negative of the Lagrange multipliers as predicted by Theorem 2.1.

3.3 A styrene production process test problem

The styrene production problem is described in [4]. It has 8 variables and 11 relaxable constraints,
4 of which are 0-1 constraints. Hidden constraints are also encountered when the internal numerical
methods fail to converge. This happens for roughly 14% of the evaluations, as reported in [8]. The
styrene problem is freely available for download on the NOMAD website [1]. This version of the
problem includes scaling as all variables are between 0 and 100.

Figure 4 illustrates the sensitivity of the objective function value versus six active (or nearly
active) constraints obtained with the simple analysis. Again all default NOMAD parameters were
used and it terminated after 1840 function evaluations, having reached the machine precision. The
extreme barrier was used for the bounds on the variables and for the four binary constraints, and the
progressive barrier on the remaining seven blackbox constraints.

The constraint c2 = 0 is boolean and the figure shows that there is a loss resulting from its ap-
plication. The constraints that are not represented in the figure are either boolean or clearly inactive.
The constraints c5 ≤ 0 and c6 ≤ 0 are inactive by a small amount of the order of 10−3 and they
could be made more restrictive without affecting the optimal value. The three other constraints in
the figure are active at the solution. The plot to the bottom shows their trade-off values. The simple
analysis does not clearly reveal the relative importance of these constraints.

We performed three detailed analyses, each with a budget of 10, 000 function evaluations. The
results are illustrated in Figure 5. This overall budget of 30, 000 evaluations was chosen to be
identical to that used in [10] where a tri-objective version of the same optimization problem is
analyzed.

The usefulness of such a sensitivity analysis could go as follows. Figure 5 reveals that the
optimal value is not very sensitive to the upper bound on x3 but increasing the upper bound on x1 or
decreasing the lower bound on x5 would lead to an important improvement of the optimal objective
function value.
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Figure 4: Simple sensitivity analysis for the styrene problem.
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Figure 5: Detailed sensitivity analyses for the styrene problem: the active constraints.

Discussion

The paper presents a general framework for sensitivity analyses of quantifiable constraints for black-
box optimization problems. Results produced by the application of the framework can be visualized
by plots of the objective function value versus small changes in the right-hand-sides of the con-
straints. No constraint qualifications are necessary to perform this analysis. However, when appro-
priate constraint qualifications are satisfied, the slope of these plots are equal to the negative of the
Lagrange multipliers.

Numerical tests were performed with the NOMAD software, an implementation of the MADS

and BIMADS algorithms. The current version of NOMAD now contains both the simple and detailed
algorithmic tools to analyze the sensitivity to constraints. The simple strategy can be launched
immediately after any run on the original optimization problem. It inspects the cache and does not
require any supplementary function evaluations.

The analysis can be made more precise by performing the detailed analysis, which solves the
biobjective optimization problem consisting of the minimization of the objective function versus the
constraint.

The framework is illustrated on an academic problem, only to verify that the produced results
coincide with the Lagrange multiplier theory. We also illustrate it on an engineering problem and
showed how the results can be interpreted in practice. We chose to use our NOMAD implementation
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but the method would also be appropriate for any other solver that records a cache of the evaluated
trial points. The biobjective direct search solver used in the detailed analysis could also be replaced
by the recent method of [14].
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[14] A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multiobjective
optimization. Technical Report Preprint 10-18, Dept. of Mathematics, Univ. Coimbra, May 2010. Paper
available at http://www.mat.uc.pt/̃ lnv/papers/dms.pdf.

http://www.gerad.ca/nomad


August 26, 2010 15

[15] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter. On the global convergence of
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