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Abstract. This paper describes a parallel space decomposition (Psd) technique for the mesh
adaptive direct search (Mads) algorithm. Mads extends a generalized pattern search for constrained
nonsmooth optimization problems. The objective of the present work is to obtain good solutions
to larger problems than the ones typically solved by Mads. The new method (Psd-Mads) is an
asynchronous parallel algorithm in which the processes solve problems over subsets of variables. The
convergence analysis based on the Clarke calculus is essentially the same as for the Mads algorithm.
A practical implementation is described, and some numerical results on problems with up to 500
variables illustrate the advantages and limitations of Psd-Mads.
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1. Introduction. This paper considers optimization problems of the form

min
x∈Ω

f(x),(P)

with the objective function f : Ω ⊂ R
n → R∪{∞}. Our motivation is to treat P when

n grows large. The feasible region Ω is assumed to satisfy a nonsmooth constraint
qualification, which we will discuss later, and we assume only the presence of an oracle
to tell whether or not a given x ∈ R

n is feasible. We are concerned primarily with
cases where f(x) or the oracle are given by black-box computer simulations, which
are assumed to evaluate in finite time. This is common in engineering design. Indeed,
the reason we allow f(x) to take on the value ∞ is that, for many such problems, no
value of f(x) is returned, even for some x ∈ Ω, because of the internal workings of
the simulation used to drive the design. See [2, 3, 10, 13, 21, 27, 32, 42].

There are other useful derivative-free direct search methods designed for problems
similar to P . These include the Nelder–Mead simplex [43], the Direct algorithm [20,
24, 30], frame-based methods [16, 44], the generalized pattern search (Gps) [7, 14,
49], the asynchronous parallel pattern search (Apps) approach [25, 29, 36, 34, 35],
and the mesh adaptive direct search (Mads) [1, 8]. Related is the implicit filter
method [31], though it does use a coarse difference gradient approximation. The
reader may consult [31, 33, 37] for a survey of some of these direct search methods.
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Using these methods to solve expensive problems with more than a few dozen
variables may be impractical, since they may need a large number of costly black-box
evaluations. Dennis and Wu [18] reviewed different parallel methods for continuous
optimization and concluded that a combination of Gps and the parallel variable dis-
tribution (Pvd) of Ferris and Mangasarian [19] should be considered:

“. . . parallel variable distribution and parallel direct searches seem
an interesting pairing. . . .”

The present paper is based on this remark.
Pvd is an evolution of the block-Jacobi technique of [11], which optimizes in

parallel a series of reduced subproblems on the subspaces of the original variables of P .
Dennis and Torczon [17] described a first parallel version of Gps, which evaluates
the black-box in parallel and synchronizes at each iteration to compare solutions
and update the current iterates. The Apps [25, 36], removes this synchronization
barrier. In Apps, each process explores the space of variables using its own set of
directions and does not wait for the other processes to terminate. Apps is expected
to be more efficient than the synchronous version of [17], especially if the black-
box has heterogeneous behavior that depends on the point where it is evaluated. A
convergence analysis is presented in [35] for the smooth case.

Our work applies a decomposition of the variables of P based on the block-Jacobi
technique of [11] that inspired the Pvd method of [19]. This allows a natural parallel
application of Mads to smaller subproblems, in an asynchronous way. The new al-
gorithm, called Psd-Mads (parallel space decomposition-Mads, can be interpreted
as a particular instance of Mads, thus inheriting the main results of the Mads con-
vergence analysis. The paper focuses on the definition of the Psd-Mads frameworks
and on its convergence analysis, and not on the choice of the subproblem variables.
In our practical implementation of the algorithm, a simple random strategy is used,
and it performs well.

The paper is divided as follows: section 2 gives an overview of the Psd and Mads

methods. Section 3 presents the new asynchronous parallel algorithm Psd-Mads,
and section 4 ensures that the main convergence results of Mads are maintained
by showing that the entire Psd-Mads algorithm may be interpreted as a specific
Mads instance. An implementation of Psd-Mads is described in section 5, with
some numerical results on problems with a number of variables ranging from 20 to
500. Finally, section 6 gives some conclusions and proposes possible extensions of
Psd-Mads.

2. Relevant literature. This section presents an overview of Psd methods.
The Mads, its convergence analysis, and a practical implementation are also described
in detail.

2.1. PSD methods. Psd methods decompose P into a finite number of smaller
dimension subproblems, which can be solved in parallel with one process assigned to
each subproblem.

Define N = {1, 2, . . . , n}, where n is the number of variables of the optimization
problem P , and Q = {1, 2, . . . , q}, where q is the number of available processes. Each
process p ∈ Q works on a nonempty subset Np ⊆ N of the variables. The other
variables are fixed, based on the incumbent solution x∗ ∈ Ω, the current best known
solution. More precisely, process p ∈ Q works on the optimization subproblem

min
x∈Ωp(x∗)

f(x),(Pp(x∗))
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with Ωp(x∗) =
{
x ∈ Ω : xi = x∗

i ∀i ∈ Np

}
and Np = N \Np. The subproblem Pp(x∗)

contains np = |Np| free variables, indexed by Np. In section 5, we propose a simple
and random strategy to build the subsets Np.

The block-Jacobi method in [11] is an iterative two-step algorithm and may be
described in a very general way as follows. At each iteration, the first step, the
parallelization, consists of solving the subproblems in parallel, and the second step,
the synchronization, gathers the subproblem solutions and constructs the next iterate.
Similar methods are described in [26, 41, 50].

A variant of the method was introduced by Ferris and Mangasarian [19], as the
Pvd for a differentiable objective function f with continuous partial derivatives. In
order to solve the subproblems more efficiently, the Pvd method allows a priori fixed
variables to change in a limited fashion, along directions typically based on∇f . These
variables are denoted as “forget-me-not” terms.

The convergence analysis in [19] requires that subproblems be solved to optimality.
In the unconstrained case, if ∇f exists and is Lipschitz, then the accumulation points
of the generated sequences are stationary points. In addition, if f is assumed to be
convex, the convergence rate is shown to be linear. When Ω is nonempty, closed, con-
vex, block-separable, and the functions defining it are also continuously differentiable,
convergence results are still available. When there are general constraints, Ferris and
Mangasarian recommend transforming the problem into unconstrained problems via
penalty functions. This strategy is untested as far as we know, and we prefer to avoid
estimating penalty constants.

These are parallel synchronous algorithms because the synchronization step waits
for all of the processes to end. The conclusion of [19] states that an asynchronous
version of the algorithm would increase efficiency. This is done in [40] for uncon-
strained problems, where the synchronization step is dropped at the expense of the
convergence analysis.

The extensions of the Pvd method are given in [45, 46, 47] with similar con-
vergence results to those in [19] under less restrictive conditions. For example, sub-
problems do not need to be solved to complete optimality, as, for example, when one
Newton-like iteration is used. A convergence analysis for the constrained case is given
with either block-separability or convexity assumptions on the structure of Ω.

In the above references, no practical and generic strategy is given concerning the
choice of the subproblem variables (sets Np). However, the sets do need to form a
partition of N , and they are fixed throughout the entire process. In the Psd [22] the
subspaces can be chosen differently at each iteration.

Fukushima [23] extends the Pvd method to a more general framework for un-
constrained problems. The sets of subproblem variables are not fixed through the
iterations and are not required to form a partition of N , but they must span N . In
particular, an overlapping of the subproblem variables is allowed. Some experiments
with such methods are given in [51].

More recently, the multidisciplinary optimization via adaptive response surfaces
(MoVars) algorithm [12] combines the Gps method with the synchronous Pvd frame-
work (including the “forget-me-not” terms from [19]) on fixed subsets Np, but there
is no convergence analysis.

In most of the references of this section, f is assumed to be at least differentiable,
and constraints, if they are considered, are block-separable or convex. These are not
reasonable assumptions for our target class of engineering design problems, and thus
our convergence analysis does not rely on the analysis of [19] or its extensions. Rather,
by incorporating Mads with its weaker hypotheses, we will inherit the Mads con-
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vergence analysis. It will also give us greater flexibility concerning the way to handle
constraints, the amount of work devoted to the subproblems, the lack of necessity for
a synchronization step, and for the choice of the subsets Np. Concerning this last
issue, we remind the reader that we will not propose an elaborated strategy for this,
as the focus of the paper is first to define the new method.

2.2. MADS. We now summarize the Mads algorithm [8] for problem P , which
extends the Gps algorithm for linearly constrained optimization [14, 49].

The constraints defining Ω are handled by the extreme barrier approach, as in [8,
38, 39]. This means that trial points outside Ω are simply rejected by setting their
objective function value to∞. Of course, this requires that the user provides a feasible
initial point x0 ∈ Ω. We make the standard assumption that all of the trial points
generated by the algorithm lie in a compact set.

Mads is an iterative algorithm where the black-box functions are evaluated at
some trial points that are either accepted as new iterates because they are feasible
and decrease the objective or are rejected.

All trial points generated by these algorithms are constructed to lie on a mesh

(1) M(Δ) =
{
x + ΔDz : x ∈ V, z ∈ N

nD
} ⊂ R

n,

where the set V , called the cache, is a data structure memorizing all previously eval-
uated points so that no double evaluations occur, Δ ∈ R

+ represents a mesh size
parameter, and D is an n× nD matrix representing a fixed finite set of nD directions
in R

n. More precisely, D is called the set of mesh directions and is chosen so that
D = GZ, where G is a nonsingular n× n matrix and Z is an n× nD integer matrix.
The definition given by (1) differs slightly from the one in [8]. There the mesh was
indexed by the iteration number instead of being parameterized by Δ. The reason
for this difference is that our parallel algorithm will be working simultaneously on
different size meshes originally generated at different iterations. Note also that in
order to simplify the notation, the mesh size parameter Δ used here is the equivalent
of Δm in [8].

Each iteration is divided into three steps: the search, the poll, and an update step
determining the success of the iteration and producing the next iterate. The search
and poll are treated specially in that the poll need not be carried out at an iteration if
the search finds a better point. At each iteration, the algorithm attempts to generate
an improved incumbent solution on the current mesh M(Δk), where Δk is the mesh
size parameter at iteration k. The search step is very flexible and allows for trial
points anywhere on the mesh. The way of generating these points is free of any rules,
as long as they remain on the current mesh M(Δk) and that the search terminates
in finite time. Some search strategies can be tailored for a specific application, while
others are generic, such as the use of Latin hypercube sampling [48], or variable
neighborhood search [4]. In summary, if one wants to define a Mads algorithm with
a specific search, all that needs to be done to ensure convergence is to show that the
search requires finite time and generates a finite number of trial points lying on the
mesh.

The poll step explores the mesh M(Δk) near the current iterate xk, and its rules
ensure theoretical convergence of the algorithm. The way of choosing the directions
used to generate the poll points is the difference between Gps and Mads. In Gps,
the set of normalized potential poll directions must be chosen from a finite set that
is fixed across all iterations. In Mads, the normalized directions may be chosen to
be asymptotically dense in the unit sphere, which allows better coverage. We use the
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Mads

[0] Initialization

x0 ∈ Ω, Δ0 > 0, k← 0

[1] Poll and search steps

objective: find a y ∈M(Δk) ∩ Ω such that f(y) < f(xk)
Search step (optional)

evaluate the functions on a finite number of M(Δk) points
Poll step (optional if the search step succeeded)

generate ndir Mads directions di ∈ R
n

evaluate the functions on the Mads frame
Pk = {xk + Δkdi : i = 1, 2, . . . , ndir} ⊆M(Δk)

[2] Updates

xk+1 ← y (iteration success) or xk (iteration failure)
Δk+1 ← τωkΔk (reduced if iteration fails)
k ← k + 1
goto [1] if no stopping condition is verified

Fig. 1. High-level description of the Mads algorithm. The directions di are positive integer
combinations of the columns of D. The search or poll steps can be stopped before all evaluations are
terminated (opportunistic strategy).

terminology of [16, 44] and say that at iteration k, the set of trial poll points is called
the frame Pk. The set of directions used to construct Pk is denoted Dk, and it is not
a subset of D.

In the last step of the kth iteration, the mesh size parameter is updated according
to Δk+1 ← τωkΔk, where τ > 1 is a fixed rational number and ωk is an integer that
depends on the success of the iteration. When no improvement is made, the iteration
is said to fail, and ωk is taken to be an integer in the interval [ω−;−1] with ω− ≤ −1,
forcing the next trial poll points to be closer to the current iterate. When a new best
iterate is found, the iteration is said to succeed, and Δk is possibly increased with ωk

in [0; ω+], with the integer ω+ ≥ 0. Specific values for τ , ω−, and ω+ are suggested
in section 2.4.

A high-level description of the algorithm is summarized in Figure 1. We encourage
the reader to consult [8] for a complete description.

2.3. MADS convergence analysis. We will summarize the main convergence
results for Mads given in [8]. These results assume that constraints are treated by the
extreme barrier approach, and they constitute a hierarchical series of results relying
on the Clarke calculus [15] for nonsmooth functions.

The main theorem is that, under a local Lipschitz assumption on f and under
the assumption that the set of all normalized poll directions is dense in the unit
sphere, the algorithm produces a Clarke stationary point. More precisely, Mads

generates a point x̂ ∈ Ω at which the Clarke generalized directional derivatives of f
in all of the directions in the Clarke tangent cone at x̂ are nonnegative. The only
assumptions needed are that f is Lipschitz near x̂ and the constraint qualification
that the hypertangent cone of Ω at x̂ is nonempty. A corollary to this result in the
unconstrained case is that if f is strictly differentiable near x̂, then ∇f(x̂) = 0.

The convergence result that requires the least assumptions on f and Ω, the zeroth
order result, is that Mads generates a limit point x̂, which is the limit of mesh local
minimizers on meshes that get infinitely fine. The notion of local optimality is, with
respect to the current poll set, defined using a positive spanning set of directions.
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More formally, Mads generates a convergent subsequence of iterates {xk}k∈K ⊂ Ω
such that xk → x̂, and f(xk) ≤ f(xk + Δkdk) for all directions dk in a positive
spanning set DK , and ‖Δkdk‖ → 0.

The price to pay for our new capability to handle a large number of variables
is that this last convergence result will be lost. We will consider a Mads algorithm
whose poll set contains a single element instead of being built using a positive spanning
set of directions. We will refer to this as a single-poll Mads algorithm, and it still
retains the property of generating asymptotically dense polling directions.

The next section discusses the LtMads (lower-triangular Mads) implementation
of the Mads algorithm. LtMads uses positive bases to construct the poll sets. It
is stated that the union of these normalized directions forms a dense set because
if one looks closely at the proof in [8], one sees that it is the subset of single-poll
normalized Mads directions that grows dense in the unit sphere. Thus, with the
assumption of local Lipschitz continuity, the main convergence result guaranteeing a
Clarke stationary point holds.

2.4. The LTMADS implementation of MADS. Mads is a general class of
algorithms, where the search and poll steps need to satisfy certain conditions for the
convergence results to hold. In particular, one of these conditions is that the total
set of normalized poll directions used by the algorithm be dense in the unit sphere.
In [8], after the definition of the Mads framework, a practical implementation is given.
This implementation is named LtMads, since it implies the random construction of
a lower-triangular matrix. At this moment, LtMads is the only published Mads

implementation, and all Mads codes in section 5.2 correspond to LtMads.
LtMads fixes τ to 4, ω− = −1, ω+ = 1, and the set of mesh directions D =

[−In In], where In represents the n × n identity matrix. The mesh is based on the
nonnegative integer value � = − log4(Δk), Δk = 4−�, and directions are constructed
randomly using a lower-triangular matrix. One of these directions is a special case
and is fixed for each value of �. This direction, called b(�), has one coordinate (the
largest in absolute value) set to ±2� so that poll points are within

√
Δk of the poll

center xk in the �∞ norm.
The result stated in [6, 8] is that with probability one, the series of normalized

directions b(�) grows dense in the unit sphere. In LtMads, the direction b(�) is
augmented at each iteration with other directions to form a positive spanning set of
polling directions. We can, as explained in the preceding section, construct a single-
poll Mads algorithm with dense polling directions using only the b(�) directions,
but the zeroth order convergence result of Mads is lost. Also, because we are not
polling at each iteration in a positive spanning set of directions, the mesh size might
drop too quickly with this single-poll version of Mads, and so the search step is of
extra importance. This is the key to the Psd-Mads algorithm described in the next
section: one process executes a single-poll Mads algorithm, while the work of the
other processes may be interpreted as a search step.

3. PSD of MADS (PSD-MADS). This section describes the combination of
Mads with a Psd method. The resulting algorithm is called Psd-Mads. It is an
asynchronous parallel algorithm where a master process decides on the subsets Np ⊆
N and assigns the resulting optimization subproblems Pp(x∗) to slaves. The slaves
apply Mads to attempt to improve the incumbent solution x∗. No synchronization
step is performed. When a slave completes its assigned task, the master assigns a new
subproblem with a possibly new Np and x∗.
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3.1. General description of PSD-MADS. Although Psd-Mads is an asyn-
chronous parallel algorithm, the notion of iteration is kept, and it corresponds to two
successive calls by the master to one special slave, called the pollster slave, described
more precisely in section 3.2. The pollster slave executes a single-poll Mads algo-
rithm on the entire problem P , while the other slaves, called the regular slaves, work
on the subproblems Pp(x∗). This task partition between the pollster and the regular
slaves allows the convergence analysis of section 4, where it is shown that the pollster
slave executes a valid Mads algorithm, thus inheriting the convergence results of [8].
Note that the pollster slave’s task requires the fewest function values of any of the
poll steps.

Each subproblem Pp(x∗) is a subproblem of P with a reduced number of variables
indexed by the set Np. When an optimization process terminates, the slave commu-
nicates its progress to the master. If it has found an improved solution, then that
becomes the new incumbent solution. The slave immediately starts work on a new
subproblem assigned by the master. There is no need to synchronize all of the slaves.

With several Mads instances executing in parallel, it is necessary to define differ-
ent mesh size parameters. First, Δp

j corresponds to the mesh M(Δp
j ) used at iteration

j of the Mads algorithm performed by a regular slave sp. The mesh size parame-
ter is denoted differently for the pollster slave, with Δ1

k (notice the same iteration
counter k used both for the pollster slave and Psd-Mads). The number Δ1

k is called
the pollster mesh size parameter at iteration k of Psd-Mads. Finally, an additional
mesh size parameter ΔM

k is called the master mesh size parameter. The mesh M(ΔM
k )

is never used explicitly, but it is useful for comparing the two other meshes M(Δ1
k)

and M(Δp
j ). At iteration k of Psd-Mads and at iteration j of the Mads algorithm

performed on a subproblem Pp(x∗) by a regular slave sp for p ∈ {2, 3, . . . , q − 2}, the
Psd-Mads construction ensures that

(2) Δ1
k ≤ ΔM

k ≤ Δp
j .

Inequalities (2) are formally proved in the convergence analysis of section 4, where
Psd-Mads is interpreted as a valid single-poll Mads instance performed by the poll-
ster slave. An additional hypothesis on the different meshes M(ΔM

k ), M(Δ1
k), and

M(Δp
j ) is necessary.

Hypothesis 3.1. If two mesh size parameters Δ and Δ′ satisfy Δ = τωΔ′, where
ω ∈ N, then M(Δ) ⊆M(Δ′).

This assumption holds for the Psd-Mads implementation given in section 5.
The q processes are partitioned into a master, q − 2 slaves, and a cache server

(process number q − 1), which memorizes all points that have been evaluated. The
q−2 slaves include the pollster slave (process number 1) and q−3 regular slaves. The
notation sp, with p ∈ Q \ {q − 1, q}, is used to identify the q − 2 processes assigned
as slaves, and Qreg = {2, 3, . . . , q − 2} is the set of the indices of the q − 3 regular
slaves. The qth process is used as the master, which defines the lower-dimensional
subproblems Pp(x∗) and communicates them to the slaves.

An advantage of applying the Psd method to Mads instead of another optimiza-
tion method is that most of the conditions necessary for convergence in the other Psd

methods mentioned in section 2.1 can be relaxed (the smoothness of the functions,
the conditions on the constraints, no synchronization step, and no restrictions on the
choice of the sets Np).

This new algorithm is not a particular case of the method in [23], which generalizes
many parallel variable decomposition methods, since general constraints are allowed,
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Pollster (p = 1)
Inputs : pollster mesh size Δ1

k

starting point x0

Output : pollster solution xp

solve problem P : Mads(pollster)
terminate after a single evaluation
send xp to master

Fig. 2. Pseudocode for pollster slave. Mads(pollster) considers all n variables with a single-poll
direction and terminates after one iteration.

and f is not assumed to be smooth. Psd-Mads also differs from the recent MoVars

algorithm [12], which does require Np to partition the variables, because it provides a
convergence analysis, it dynamically changes the sets Np, and it is an asynchronous
parallel method. The next sections describe precisely the role of each process.

3.2. The pollster slave s1, on M(Δ1
k). The pollster slave s1 has a special

role; its set of variables is always fixed to N1 = N , so that it works on the original
problem P . Due to its greater impact on the algorithm and to distinguish s1 from
the other slaves, we call it the pollster slave, or, simply, the pollster.

To reduce the expected high number of evaluations done by the successive pollster
instances, a single-poll Mads algorithm is used (the poll directions are reduced to a
single element), with the conditions that the union of all of the normalized directions
used throughout the algorithm are dense in the unit sphere and that the norms of
those directions are in proper relation with the mesh size parameter.

Moreover, the pollster is limited to only one Mads iteration, with no search step
and one poll step. It follows that, at most, one function evaluation will be performed
(zero function evaluation if the unique poll trial point is found in the cache), and the
pollster mesh size parameter Δ1

k will not be updated (this is done by the master).
The notation Mads(pollster) or Mads(s1) refers to the single-poll Mads algo-

rithm performed by the pollster. Mads(pollster) is defined so that its mesh size
parameter Δ1

k cannot be larger than the master mesh size ΔM
k at iteration k of Psd-

Mads (see (2)).
The pollster pseudocode is shown in Figure 2. The pollster mesh size is updated

by the master. The best obtained solution corresponds to xp, which is sent to the
master. The convergence analysis in section 4 is based on the pollster and on the fact
that consecutive runs of Mads(s1) form a valid single-poll Mads instance on P .

3.3. The regular slaves s2 to sq−2, on M(Δp
j ). The regular slaves sp, p ∈

Qreg work on subsets Np of N and use the positive spanning sets of directions. The
Mads algorithm working on problem Pp(x∗) and performed by slave sp is designated
by Mads(sp).

Subproblem Pp(x∗) is defined as an |Np|-variable problem, since all of the variables
in N \Np are fixed. Trial points generated by Mads(sp) are then in R

n, with some
coordinates fixed. The values of these fixed coordinates are directly taken from the
starting point for Mads(sp), i.e., x∗, the incumbent solution. The user supplies a
parameter bbemax > 0 that indicates the maximum allowed number of black-box calls
for the application of Mads to the optimization of a subproblem.

The pseudocode for the regular slaves is shown in Figure 3. Mads(sp) generates
the trial points on meshes of sizes Δp

j , where j is the iteration counter of the subprob-
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Slave sp (p ∈ Qreg)
Inputs : initial mesh size Δp

0

minimum mesh size Δp
min

starting point x0

set of variables Np

Outputs : slave solution xp

final mesh size Δp
stop

solve subproblem Pp(x∗): Mads(sp)
terminate when Δp

j < Δp
min or after bbemax evaluations

send xp and Δp
stop to master

Fig. 3. Pseudocode for slaves processes. Does not include pollster slave, which is specifically
described in Figure 2.

lem algorithm. The initial mesh size Δp
0 for Mads(sp) is set by the master. The value

of the parameter Δp
min also is supplied by the master and equals ΔM

k , where k is the
Psd-Mads iteration at which Mads(sp) started. Finally, we impose that no mesh
size for Mads(sp), p ∈ Qreg exceeds the Psd-Mads initial mesh size Δuser

0 provided
by the user. Mads(sp) terminates if bbemax evaluations are made, or if a minimal
mesh size Δp

min is reached. The final mesh size (Δp
stop) and the best solution found

(xp) are sent to the master.
The union of all regular slaves Mads(sp) instances is interpreted as a search

step for the total problem single-poll Mads algorithm. This is important to the
convergence analysis in section 4.

3.4. The cache server—(q − 1)th process. The cache server is a specialized
process that simply memorizes all evaluated points. Each time a process generates
a trial point, the cache server is interrogated. This is done to avoid unnecessary
expensive function evaluations in case this point has already been evaluated. The
cache server provides the global availability of any improvement made by any slave.
This is interpreted in section 5 as a search step (the cache search) by the regular
slaves on their subproblems.

3.5. The master—qth process. The master process coordinates the work of
the q − 2 slaves. It waits for slave results, updates data, and assigns work to slaves.
It evaluates only the black-box functions at the starting point x0.

The master process provides the master mesh size ΔM
k at iteration k of Psd-

Mads, which is the link between the mesh sizes Δ1
k and Δp

j on which the different
Mads(sp), p ∈ Qreg work. The initial master mesh size ΔM

0 = Δuser
0 is set by the

user.
The master process updates the pollster mesh size Δ1

k, after a pollster instance
terminates. If no improvement is made by any slave s1 to sq−1 during iteration k, the
iteration is a failure, and the pollster mesh size is reduced. If the iteration succeeds,
then the pollster mesh size is increased. In all cases, the pollster mesh size is smaller
than the master mesh size (2). The value of the pollster mesh size is also kept less
than or equal to Δuser

0 .
For all regular slaves s2 to sq−2, the minimal mesh size Δp

min is set to the current
value of ΔM

k . This, as is explained in more detail in the convergence analysis, leads to
the fact that, at iteration k of Psd-Mads, no regular slave can generate trial points
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Master

[0] initialization

x∗ ← x0 ∈ Ω, Δ1
0 ← ΔM

0 ← Δuser
0 > 0, k ← 0, ω− ≤ −1 , ω+ ≥ 0

start Mads(pollster) with (Δuser
0 , x0) (Figure 2)

for all (p ∈ Qreg)
construct Np and set Δp

min ← ΔM
0

start Mads(sp) with (Δuser
0 , Δp

min, x0, Np) (Figure 3)
[1] iterations

given values from a slave sp (xp, Δp
stop)

if

(
f(xp) < f(x∗)

)
(success)

x∗ ← xp

if (p = 1)
(
pollster, Δp

stop corresponds to Δ1
k

)
ΔM

k+1 ← ταk Δ1
k ≤ min

p∈Qreg

Δp
min, with αk ∈ [0; ω+]

Δ1
k+1 ← τωkΔ1

k (Figure 5)
k ← k + 1
start Mads(pollster) with (Δ1

k, x∗) (Figure 2)
else (regular slave)

construct Np

Δp
min ← ΔM

k

Δp
0 ← τγΔp

stop, with γ ∈ Z and so that ΔM
k ≤ Δp

0 ≤ Δuser
0

start Mads(sp) with (Δp
0, Δp

min, x∗, Np) (Figure 3)
goto [1] if no stopping condition is verified

Fig. 4. Pseudocode for master process. ΔM
k and Δ1

k are the master and pollster mesh sizes

at iteration k, and Δp
stop is the last mesh size of a slave sp. If p = 1, Δp

stop = Δ1
k ≤ ΔM

k , else

Δp
stop ≥ ΔM

k . The master evaluates the black-box just once for x0.

pollster mesh size update Δ1
k+1 ← τωkΔ1

k

if (iteration success)
ωk = αk ∈ [0; ω+]

(
Δ1

k+1 ← ΔM
k+1

)(
pollster mesh size increase, Δ1

k+1 ≥ Δ1
k

)
else

ωk ∈ [ω−;−1](
pollster mesh size decrease, Δ1

k+1 < Δ1
k

)
Fig. 5. An update of the next pollster mesh size Δ1

k+1. In any case, the pollster mesh size

verifies Δ1
k ≤ ΔM

k .

on meshes finer than M(ΔM
k ) and that all of the slaves work, in fact, on the pollster

mesh of size Δ1
k.

The master process pseudocode is described in Figure 4, and the pollster mesh
size update is detailed in Figure 5. The pseudocode for the master process implies
that, when the master mesh size is updated, it is always possible to find an integer
αk ∈ [0; w+] such that ταkΔ1

k ≤ minp∈Qreg Δp
min. The next proposition shows that

αk = 0 is always a candidate.
Proposition 3.2. At iteration k of the Psd-Mads algorithm, there exists a

nonnegative integer αk such that ταkΔ1
k ≤ minp∈Qreg Δp

min.
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Apparent pollster

[0] Initialization

x0 ∈ Ω, ΔM
0 ← Δ1

0 ← Δuser
0 > 0, k← 0

[1] Poll and search steps

Search step (by other slaves, opportunistic)
ask cache server for xs ∈M(ΔM

k ) ⊆M(Δ1
k)

Single-poll step

construct and evaluate Pk = {xpoll} ⊆M(Δ1
k)

[2] Updates

determine type of success of iteration k

Δ1
k+1 ← τωkΔ1

k

(
cannot be larger than ΔM

k+1

)
xk+1 ← (xs or xpoll or xk)
k ← k + 1
goto [1] if no stopping condition is verified

Fig. 6. A detailed pseudocode of the apparent pollster algorithm, the algorithm from the point
of view of the pollster slave. At every moment, a finite number of M(Δ1

k) points are evaluated in
parallel by other slaves. These evaluations are considered within the opportunistic search step. ΔM

k
is updated by the master after the poll step.

Proof. At iteration 0, Δ1
0 = ΔM

0 = Δuser
0 = minp∈Qreg Δp

min so α0 = 0, and
therefore it exists. Then ΔM

1 = Δuser
0 and minp∈Qreg Δp

min at iteration 1 is equal to
Δuser

0 . Figure 5 ensures that Δ1
1 is bounded above by Δuser

0 , and therefore α1 = 0 is
a possible value.

Suppose, by way of induction, that, for some k ≥ 2, the proposition is true
at iteration k − 1. It follows that ΔM

k = ταk−1Δ1
k−1 ≤ minp∈Qreg Δp

min, and as it
corresponds to new values for Δp

min, p ∈ Qreg, and the new smaller possible value of
minp∈Qreg Δp

min at iteration k remains ΔM
k . The largest value that Δ1

k may take is
also ΔM

k , which shows αk = 0 validates the result.
This proof allows all values of αk to be zero, but, in practice, nonzero values are

likely. For example, if iteration 1 failed and Δ1
1 = Δuser

0 , then the following mesh
updates are possible: ΔM

2 ← Δuser
0 (α1 = 0) and Δ1

2 ← Δuser
0 /4. minp∈Qreg Δp

min is
still equal to Δuser

0 at iteration 2, and so α2 can be either 0 or 1.

4. Convergence analysis of PSD-MADS. It is shown here that the entire
algorithm may be interpreted as a single-poll Mads algorithm applied to the original
problem P and that conditions are met so that the main convergence results from [8]
hold. These conditions are that the regular slaves generate a finite number of trial
points lying on the pollster mesh and that all of these trial points can be interpreted
as a search step with the pollster slave providing the poll step. This is detailed in
Figure 6, and we refer to it as the apparent pollster algorithm. This algorithm is
another way of interpreting the Psd-Mads algorithm described by the pseudocodes
in Figures 2, 3, 4, and 5. Iteration k of the apparent pollster algorithm corresponds
to the iteration k of Psd-Mads (used by the master process), and the notions of
iteration success and failure remain the same.

The convergence analysis in this section proves that the apparent pollster algo-
rithm is a single-poll Mads algorithm with the following components:

• A search step performed by regular slaves s2, s3, . . . , sq−2 on meshes of coarse-
ness larger than or equal to ΔM

k ;
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• A poll step at iteration k (the same k used by the master process in Figure 4)
performed by one call to the pollster slave s1 on a mesh of size Δ1

k ≤ ΔM
k ;

• A mesh update performed by the master process with Δ1
k+1 ← τωkΔ1

k and

the integer ωk ∈
{

[0; ω+] iteration success,
[ω−;−1] iteration failure.

The master mesh size parameter ΔM
k at iteration k is the link described by

inequalities (2) between the mesh size of Mads(pollster) and the different mesh
sizes of Mads(sp). It is updated by the master with the Mads(pollster) mesh (via
Δp

stop = Δ1
k), in such a way that, at every iteration k of the apparent pollster al-

gorithm, Δ1
k satisfies Δ1

k ≤ ΔM
k . This ΔM

k update by the master in the apparent
pollster algorithm occurs when the mesh size Δ1

k is updated, and while its value does
not change during the poll step, it can possibly be updated during the search step,
since that is performed in parallel. This possible change of the ΔM

k value within the
search step of the apparent pollster algorithm is governed by the fact that ΔM

k cannot
be exceeded by any regular slave mesh size (ΔM

k ≤ minp∈Qreg Δp
min).

To show that the apparent pollster algorithm is a valid single-poll Mads algorithm
applied to the original problem P and that the convergence conditions of [8] hold, the
search trial points, whose evaluations are performed at any time in parallel by the
other slaves, must remain finite in number and on the current pollster mesh at iteration
k, Δ1

k. This will be shown via the following propositions.
Proposition 4.1. The mesh size parameter at iteration j of the Mads algorithm

performed by a slave sp, p ∈ Qreg on a subproblem Pp(x∗) satisfies Δp
j = τ−ηj Δuser

0

for some integer ηj ≥ 0. This can be extended to the pollster slave at iteration k, with
Δ1

k = τ−ηkΔuser
0 .

Proof. We first show that the proposition is true for the first optimization sub-
problem solved by a regular slave sp, p ∈ Qreg. The initial mesh size parameter used
for this Mads instance is Δuser

0 , and with the standard Mads mesh update rules,
at iteration j, Δp

j = τωj−1Δp
j−1 = · · · = τ

∑ j−1
i=0 ωiΔuser

0 . Then ηj = −∑j−1
i=0 ωi ≥ 0,

because no mesh size can be larger than Δuser
0 .

Suppose now that the proposition is true for the rth Mads instance performed
by sp. In particular, the last mesh size parameter of this instance can be written
Δp

stop = τ−ηstopΔuser
0 , where ηstop is a nonnegative integer. From the algorithm

described in Figure 4, the first mesh size parameter of the (r + 1)th Mads instance
performed by sp is Δp

0 = τγΔp
stop, with γ ∈ Z. Then, at iteration j of the (r + 1)th

instance, Δp
j = τ

∑ j−1
i=0 ωiΔp

0 and ηj = −∑j−1
i=0 ωi − γ + ηstop ≥ 0 because Δp

j ≤ Δuser
0 .

The proposition can be extended to the pollster slave with the same induction proof
on k.

Proposition 4.2. At iteration k of Psd-Mads, and at iteration j of the Mads

algorithm performed by sp (p ∈ Qreg) on a subproblem Pp(x∗), there exists a nonneg-
ative integer βj such that Δp

j = τβj ΔM
k .

Proof. From the algorithm in Figure 4, the master mesh size parameter, at it-
eration k of Psd-Mads, can be written ΔM

k = ταk−1Δ1
k−1, with αk−1 ∈ N, and

Δ1
k−1 = τ−ηk−1Δuser

0 , with ηk−1 ∈ N, from Proposition 4.1. From the same propo-
sition, the mesh size parameter at iteration j of Mads(sp), p ∈ Qreg can be written
Δp

j = τ−ηj Δuser
0 , ηj ∈ N. Then, Δp

j = τβj ΔM
k , with βj = ηk−1− ηj −αk−1. The min-

imal mesh size parameter Δp
min considered by Mads(sp) corresponds to ΔM

i , where
i ≤ k is an anterior iteration of Psd-Mads. The current value of ΔM

k was chosen
to be smaller than minp∈Qreg Δp

min ≤ ΔM
i . Then, ΔM

k ≤ ΔM
i ≤ Δp

j , and βj is a
nonnegative integer.
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An immediate corollary, with Hypothesis 3.1, is that at iterations k of Psd-Mads

and j of Mads(sp), p ∈ Qreg, M(Δp
j ) ⊆M(ΔM

k ).
Proposition 4.3. At iteration k of Psd-Mads, every trial point generated by

the Mads algorithm performed by sp, p ∈ Qreg on any subproblem Pp(x∗), lies on the
pollster mesh M(Δ1

k).
Proof. From the algorithm in Figure 4, the pollster and master mesh size pa-

rameters at iteration k of Psd-Mads are linked with ΔM
k = ταk Δ1

k, αk ∈ N. With
Hypothesis 3.1 and Proposition 4.2, at iteration j of Mads(sp), M(Δp

j ) ⊆M(ΔM
k ) ⊆

M(Δ1
k). Since all Mads(sp) trial points are constructed on M(Δp

j ), they also lie on
M(Δ1

k).
This series of propositions ensures that all of the trial points of the search step of

the apparent pollster at iteration k, performed in parallel by regular slaves, lie on the
current pollster mesh Δ1

k. In addition, their number remains finite as the time between
two iterations, corresponding to a single-point poll, is finite (with the hypothesis that
the black-box evaluates or is terminated to return∞, in finite time). The Psd-Mads

algorithm, viewed from the perspective of the pollster slave, thus executes a valid
single-poll Mads search, and the main convergence results of [8] remain valid. Let
x̂ be the limit of a subsequence of Psd-Mads incumbents at unsuccessful iterations.
Then

• If f is Lipschitz near x̂ ∈ Ω, then the Clarke derivative satisfies f◦(x̂; v) ≥ 0
for all v ∈ T H

Ω (x̂), the hypertangent cone to Ω at x̂;
• In the unconstrained case and if f is strictly differentiable at x̂, ∇f(x̂) = 0.

As mentioned in section 2.3, the fact that the single-poll version of Mads is used
sacrifices the zeroth order result of [8], i.e., x̂ cannot be said to be the limit of local
optima on meshes that get infinitely fine.

5. A practical implementation of PSD-MADS. This section proposes a
practical implementation of the Psd-Mads algorithm described in section 3 based on
the LtMads implementation proposed in [8] and summarized in section 2.4. Numer-
ical tests complete the implementation description.

5.1. PSD-MADS implementation.

Verification of Hypothesis 3.1. The above convergence analysis relies on Hy-
pothesis 3.1. An easy way to satisfy this hypothesis is to simply choose τ to be an
integer. Indeed, consider the mesh point x ∈ M(Δ) and mesh size Δ ∈ R. From the
mesh definition (1), x can be written as y + Δ

∑nD

i=1 zidi, where y belongs to V , the
set of currently evaluated points, and zi are nonnegative integers. Now, if Δ′ = τωΔ,
where ω ∈ N and 1 ≤ τ ∈ N, then x can be rewritten as x = y + Δ′ ∑nD

i=1 τωzidi. It
follows that τωzi ∈ N, i = 1, 2, . . . , nD, and therefore x ∈M(Δ′). We have shown that
M(Δ) ⊆ M(Δ′), and thus Hypothesis 3.1 is satisfied. In the proposed Psd-Mads

implementation, the LtMads fixed value of τ = 4 is used.

Directions used by the pollster. The LtMads direction b(�) is used in the
single-poll Mads algorithm executed by the pollster slave. The union of normalized
directions b(�), � = 1, 2, . . . , is dense in the unit sphere with probability one, and
Mads(pollster) with the b(�) direction respects the conditions for a valid single-poll
Mads algorithm.

Sets Np of subproblem variables. This paper does not focus on the choice
of the subproblem variables. Rather, we use this very simple strategy: let the sets
Np, p ∈ Qreg = {2, 3, . . . , q − 2}, be randomly generated by the master using a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLEL SPACE DECOMPOSITION OF THE MADS ALGORITHM 1163

uniform distribution before each subproblem parameter set is sent to a regular slave
process. In order to keep an easy parametrization of this Psd-Mads implementation,
the number of variables for each subproblem is fixed throughout the entire algorithm
|N2| = |N3| = · · · = |Nq−2| = ns, where ns is a parameter chosen by the user
(recall that, for the pollster, N1 = N). Notice also that ns is not required to satisfy
(q − 3)ns ≥ N . Furthermore, when Mads(sp), p ∈ Qreg succeeds in improving the
incumbent, the same set Np is kept for the next run performed by the slave sp.

Mesh update rules. The mesh directions of definition (1) are the standard
LtMads 2n directions D = [−In In]. The following mesh size parameter updates are
in accordance with the LtMads mesh update rules:

• Regular slaves mesh size Δp
j (at iteration j of MADS(sp), p ∈ Qreg):

After an iteration fails, the mesh size is updated with Δp
j+1 ← Δp

j/4 (ωj =
−1 in Figure 1). If a poll step is successful, Δp

j+1 ← 4Δp
j (ωj = 1). In

the next search step, if a successful point is found in the cache server, set
Δp

j+1 ← 4Δcache, where Δcache is the mesh size used to generate this point.
Equation (3) summarizes these updates as follows:

(3) Δp
j+1 ←

⎧⎨
⎩

min
{
Δuser

0 , 4Δp
j

}
poll success,

min {Δuser
0 , 4Δcache} cache search success,

Δp
j/4 iteration failure.

If Δp
j+1 < Δp

min or if the number of new function evaluations exceeds bbemax,
Mads(sp) terminates and communicates Δp

stop = Δp
j to the master. The

next optimization performed by this slave will start with an initial mesh size
parameter Δp

0 equal to 4γΔp
stop, with γ = 1 if at least one success was achieved

since the beginning of the current optimization (even by another slave), or
else γ = −1. However, this may lead to a value smaller than Δp

min = ΔM
k ,

and, in this case, set Δp
0 ← ΔM

k .
The Δp

0 choice for the next Mads(sp) is summarized by

(4) Δp
0 (next Mads(sp))←

{
min

{
Δuser

0 , 4Δp
stop

}
success,

max
{
ΔM

k , Δp
stop/4

}
else.

• Master mesh size ΔM
k at iteration k of PSD-MADS: The update of the

master mesh size is performed by the master after a pollster instance termi-
nates. ΔM

k+1 is bounded below by the mesh size parameter of the terminated
pollster Δ1

k and above by the minimum of all Δp
min values currently used by

regular slaves. These Δp
min values correspond to previous master mesh sizes.

It would be possible to choose the parameter αk in Figure 4 at each update
so that ΔM

k+1 is fixed to Δuser
0 , with αk equal to the ηk from Proposition 4.1.

However, such a strategy would not be efficient, as regular slaves would always
generate trial points on the same mesh M(Δuser

0 ). The master mesh size has
then to be reduced somehow through the Psd-Mads evolution. However, it
should not be reduced too rapidly, or the algorithm would progress slowly or
even terminate prematurely in practice.
We propose the following strategy: From Figure 4, ΔM

k is updated by ΔM
k+1 ←

4αkΔ1
k, with αk ∈ N, and from Proposition 4.1, Δ1

k = 4−ηkΔuser
0 , with some

ηk ∈ N. If iteration k succeeded, set αk = ηk = log4

(
Δuser

0 /Δ1
k

)
(maximal

ΔM
k increase), and else αk = ηk − �(ηk + 1)/3� (attenuated ΔM

k increase). In
both cases, if ΔM

k+1 is greater than at least one of the regular slave’s mesh
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size Δp
min, then ΔM

k+1 is set to the least Δp
min values. This can be summarized

by the following:

(5) ΔM
k+1 ←

⎧⎪⎪⎨
⎪⎪⎩

min
{

Δuser
0 , min

p∈Qreg

Δp
min

}
iteration success,

min
{

4−�(ηk+1)/3	Δuser
0 , min

p∈Qreg

Δp
min

}
iteration failure.

For example, if Δuser
0 = Δp

min = 1 for each p ∈ Qreg and if the pollster
instance fails with a pollster mesh size of Δ1

k = 1/16, then the master mesh
size ΔM

k+1 is set to 1/4 (ηk = 2, αk = 1).
• Pollster mesh size Δ1

k at iteration k of PSD-MADS: In the case of an
iteration success, Δ1

k+1 is set to ΔM
k+1 (ωk = αk ∈ N), or else Δ1

k+1 = Δ1
k/4

(ωk = −1):

(6) Δ1
k+1 ←

⎧⎨
⎩ ΔM

k+1 = min
{

Δuser
0 , min

p∈Qreg

Δp
min

}
iteration success,

Δ1
k/4 iteration failure.

MADS parameters for MADS(sp), p ∈ Qreg. The regular slaves p ∈ Qreg

solve Mads(sp) using the standard Mads 2|Np| directions. All polls are opportunistic,
meaning that a subproblem optimization terminates as soon as a better point is found.
The one-point dynamic search strategy of [8] is also performed: it consists, after a
successful poll step, in evaluating, within a single-point search, the black-box functions
at a mesh point located further along the same successful direction.

In addition to the poll and the one-point dynamic search, Mads(sp) performs
a specialized search step, which simply consists in querying the cache server for the
best available feasible point. This special search step generates no additional function
evaluation and allows every regular slave to know the best points eventually obtained
by other slaves. Note that this search step has no obligation to give a point lying on
the current mesh of Mads(sp), but this does not influence the convergence analysis
as it is based on the pollster s1, and as the point given by this search must come from
another slave, thus lying on M(ΔM

k ).

Practical termination criteria. The regular slaves p ∈ Qreg terminate
Mads(sp) as soon as the mesh size parameter Δp

j drops below Δp
min = ΔM

k (where
k is the Psd-Mads iteration at which Mads(sp) was started) or after a finite num-
ber of bbemax black-box function evaluations are made. The Psd-Mads algorithm is
stopped after an overall limit of bbeglobal

max black-box evaluations is reached.

5.2. Numerical experiments. The Psd-Mads implementation described in
section 5.1 is tested here, on two different problems. The implementation of Mads

used to optimize subproblems corresponds to LtMads and is the research version of
the Nomad C++ code [5]. The parallel master/slaves paradigm is achieved with Mpi

with q = 6 or 14 processes.
Psd-Mads is compared to three other parallel algorithms, on the same number

q of processes: First, the pGps method described in [17], which corresponds to the
unmodified Gps method where evaluations are made in parallel. Second, pMads,
which is the trivial adaptation of pGps that uses LtMads instead of Gps. pGps

and pMads are both synchronous parallel algorithms. The third method is Apps

version 5.0.1 [25, 36], the only available Gps asynchronous parallel algorithm.
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The first problem (referred as Problem A) considered for the tests is the G2
example from [28]. It has been chosen for its difficulty and for its variable size: our
tests involve n = 20, 50, 250, and 500 variables. Problem A is written as follows:

min
x∈R

n
f(x) = −

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

cos4 xi − 2
n∏

i=1

cos2 xi√
n∑

i=1

ix2
i

∣∣∣∣∣∣∣∣∣∣

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−

n∏
i=1

xi + 0.75 ≤ 0,
n∑

i=1

xi − 7.5n ≤ 0,

0 ≤ xi ≤ 10, i = 1, 2, . . . , n.

The problem is treated as a black-box, and an upper limit of 100n function evaluations
is imposed. The feasible starting point for all methods is the center of the bound
constrained domain x0 = [5 5 . . . 5]T ∈ Ω. The best known value from [28], for n = 20,
is f(x) = −0.803619. In [28], various genetic algorithms gave good solutions, after
several hundred thousand evaluations. Here, after a maximum of 2000 evaluations,
Psd-Mads achieved f(x) � −0.76.

The second test problem (Problem B) was designed for the MoVars algorithm [12].
It has n = 60 variables and one constraint with two different versions: G ≥ 250, or
G ≥ 500 (see [12] for a more complete description). An infeasible starting point is
provided in [12], but cannot be used in the present work, since constraints are treated
with the extreme barrier approach. The feasible starting points considered here for the
two versions of Problem B have been obtained by minimizing the constraint violation
(max{0, 250−G})2 or (max{0, 500−G})2, from the starting point of [12], with the
pMads algorithm. These optimizations required three evaluations for G ≥ 250, with
the resulting feasible point x0 giving f(x0) = 3678.35 and 74 evaluations for G ≥ 500,
and f(x0) = 3014. These evaluations costs are considered in Figure 8. The feasible
starting points, our source code for Problem B, and our best points are available on
the website www.gerad.ca/Charles.Audet (see [5]). Our results for Problem B are not
compared with the MoVars algorithm results because numerical values are not given
in [12]. The best solutions found gave f(x) = 13.565 for G ≥ 250, and f(x) = 245.866
for G ≥ 500.

The various results of this section are measured considering two quantities: z
represents the best value of the objective function of problem P , and bbe represents
the total number of black-box evaluations. One evaluation is counted for the calls to
both the objective f and the constraints of Ω.

The most representative cost of a black-box optimization algorithm is the number
of black-box evaluations. For this reason, no speedup curves are given, and q is kept
constant for each problem (q = 14 for Problem A and q = 6 for Problem B). Still,
the durations of executions are given. The Psd-Mads method was not conceived
in order to reduce the time to obtain a solution. Instead, we seek to obtain better
solutions than a nondecomposing algorithm for problems with a large number of
variables (20 ≤ n ≤ 500).

For all of our tests, the termination criteria is the maximum total number of
black-box evaluations, which is bbeglobal

max = 100n for Problem A and bbeglobal
max = 3000

for Problem B (as in [12]).
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Table 1

Numerical results for problems A and B: zbest, zworst, and zavg give information on the 30 runs
performed for each pMads and Psd-Mads test series, Savg gives a measure of the area below the
curves in Figures 7 and 8, and tavg represents the average wall clock time, in seconds. Best values
appear in bold.

Algo.

pGps

Apps

pMads

Psd-Mads

pGps

Apps

pMads

Psd-Mads

pGps

Apps

pMads

Psd-Mads

Prob. zbest zworst zavg Savg tavg

-0.450 -0.450 -0.450 1,002 7
A -0.519 -0.519 -0.519 782 3

n=20 -0.775 -0.434 -0.592 670 19
-0.761 -0.430 -0.666 595 8
-0.089 -0.089 -0.089 18,336 77

A -0.196 -0.196 -0.196 16,934 137
n=250 -0.449 -0.438 -0.444 9,703 95

-0.698 -0.464 -0.603 8,568 83

764.741 764.741 764.741 2,731,920 11
B 813.216 813.216 813.216 3,868,460 6

G ≥ 32.700 317.167 112.522 1,071,870 14
250 13.565 307.305 70.121 965,553 14

Prob. zbest zworst zavg Savg tavg

-0.277 -0.277 -0.277 3,400 14
A -0.461 -0.461 -0.461 2,355 6

n=50 -0.498 -0.430 -0.457 1,939 33
-0.727 -0.528 -0.663 1,553 29
-0.073 -0.073 -0.073 37,392 179

A -0.129 -0.129 -0.129 35,797 1,300
n=500 -0.447 -0.439 -0.443 19,380 275

-0.688 -0.461 -0.576 17,660 277

869.559 869.559 869.559 3,552,910 11
B 1,097.560 1,097.560 1,097.560 4,519,510 6

G ≥ 417.049 948.768 662.841 2,892,140 14
500 245.866 731.023 463.969 2,603,480 19

The initial (and maximal) mesh size parameter is Δuser
0 = 2 for Problem A. For

Problem B, due to scaling reasons, the value of Δuser
0 differs for each variable and is

set to be 0.2 times the range of the variables (i.e., Δuser
0 = 0.3 for the 15 first variables,

0.35 for the next 30 variables, and 0.44 for the last 15 variables). These values have
been decided empirically to give good results with standard Mads and Apps runs.
The linear nature of the second constraint of Problem A is exploited by Apps. Since
Psd-Mads and pMads involve randomness in the polling directions, 30 runs are made
for each test. The parallel execution of pGps and Apps can affect their determinism;
however, this effect was ignored, and one run was performed for each test.

To measure the quality of the solutions found, the best (zbest), worst (zworst), and
average (zavg) values of the objective function value z at the 100nth evaluation are
reported. Another measure is Savg, representing the area between a curve z versus
bbe and the line z = −0.8 for Problem A (no run gave z < −0.8), and z = 0 for
Problem B. Wall clock time expressed in seconds are reported in the column tavg.
Best runs are obtained with small values for all of these quantities.

Psd-Mads was tested on Problem A with n = 20 and 50 by varying bbemax, the
maximum number of black-box evaluations for each regular subproblem, and ns, the
number of variables in each subproblem. The number of processes has been set to
q = 14 in order to fully exploit 12 processors. Good results were obtained by setting
bbemax = 10 and having the regular slaves working on small dimensional subspaces
ns = 2. These values are kept for n > 50. For Problem B, bbemax is kept to 10. The
best results have been obtained by distributing the 60 variables amongst 3 regular
slaves with q = 6 and ns = 20.

Table 1 and Figures 7 and 8 summarize the numerical results. For all instances
of Problem A, Apps outperforms pGps, but neither does as well as Psd-Mads.
In the three larger instances of Problem A, the worst f value produced by Psd-

Mads is always better than all of the other methods’f values. For Problem B, pGps

outperforms Apps, and better results are obtained with pMads and Psd-Mads,
with a small advantage to Psd-Mads. In all of the curves in Figures 7 and 8, one can
notice that pMads is always the fastest to descend, but Psd-Mads overtakes it and
produces better solutions. Finally, we remark that Apps terminates in the least wall
clock time on smaller problems, albeit with a less optimal function value. However,
for problems with 250 and 500 variables, the wall clock time grows significantly worse.
This is in accordance with the remark in [25] stating that Apps targets problems with
less than 100 variables.
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Fig. 7. Problem A: graphs of the objective function value versus the number of evaluations for
all test results. Psd-Mads and pMads plots correspond to average values of the 30 runs performed
for each test.
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Fig. 8. Problem B: graphs of the objective function value versus the number of evaluations for
all test results. Psd-Mads and pMads plots correspond to average values of the 30 runs performed
for each test.
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We conclude this section with some advice for readers interested in testing Psd-

Mads. First, we think that the Psd-Mads decomposition is beneficial for problems
with more than 20 variables. For these problems, at least 3 processors are necessary.
Furthermore, since the master and cache server processes are not demanding in terms
of Cpu, 5 processes can be executed on the 3 processors, whose work will be mainly
devoted to two regular slaves and the pollster. Two regular slaves is the minimum
number to benefit from the decomposition. So, even if only a few processors are
available, it is still worthwhile to try this method. Finally, if the user has no particular
strategy to choose the subsets of variables in each subproblem, we recommend to
equally distribute the variables to the regular slaves. If the user knows that some of the
variables are more likely to produce descent than others, then some subproblems can
be devoted to these variables, while single-poll Mads can be used on the subproblems
of less important variables.

6. Discussion and possible extensions. This paper introduced Psd-Mads,
a new Psd technique with less restrictive conditions than usual Psd methods on
the functions to be optimized and on the sets of variables in the subproblems. It is
shown that the algorithm, from any starting point, produces a subsequence of iterates
converging to a solution satisfying local optimality conditions (global convergence to
local solutions), based on Clarke calculus and on the Mads convergence analysis. A
practical implementation is described, with a small number of parameters (bbemax and
ns), and very encouraging results have been obtained on a difficult problem from the
literature, with up to 500 variables.

We presented a first basic implementation of Psd-Mads with a very simple and
generic strategy to choose the sets of variables. An obvious extension is a better
strategy to decide on the sets of variables in the subproblems. Of course, it is not
clear how to do this, in general, or we would have done it here. However, for some
applications, the user may have special knowledge that would help in this task. For
example, the user might put similarly scaled variables in the same subproblem.

It would also be interesting to incorporate the Pvd idea of the “forget-me-not”
terms and allow some basic changes in the subproblems for fixed variables. A third
possibility would be to perform some additional search steps in the slave subspaces.
Another possible extension would be to reintroduce the synchronization step of the
original block-Jacobi method but without the parallel barrier. This “recomposition”
step could be performed in parallel by one of the regular slaves, from a pool of suc-
cessful points, in order to create a problem similar to the one in [19]. Finally, the
constraints of Ω could be treated with the progressive barrier [9], instead of the ex-
treme barrier approach. This would allow for infeasible iterates, including the starting
point.

Acknowledgments. We would like to thank anonymous referees for their con-
structive remarks and comments.
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